TWCC
Semicontaiwan
 

Kneron推出低功耗人工智慧專用處理器IP

耐能智慧(Kneron)發布Kneron NPU IP神經網路處理器系列(Kneron NPU IP Series),為針對終端裝置所設計的專用人工智慧處理器IP。Kneron NPU IP系列包括3款產品,分別為超低功耗版KDP 300、標準版KDP 500、以及高效能版KDP 700,可滿足智慧型手機、智慧家居、智慧安防、以及各種物聯網裝置的應用。全系列產品特性低功耗、體積小,且提供高運算能力。Kneron NPU IP的功耗為100毫瓦(mW)等級,針對智慧型手機臉部辨識專用的KDP 300,功耗甚至不到5毫瓦。

Kneron創辦人暨執行長劉峻誠表示,要在終端裝置上進行人工智慧運算,同時滿足功耗與效能需求是首要考量,Kneron NPU IP實現了這樣的目標,為終端人工智慧帶來革命性的發展。Kneron自2016年推出首款終端裝置專用的人工智慧處理器NPU IP後,就不斷改善其設計與規格,並針對不同產業應用進行優化。Kneron很高興推出全系列新一代產品,同時宣布KDP 500已獲得客戶採用,將於第2季進入量產製造(Mask tape-out)階段。

Kneron NPU IP是針對終端裝置所設計的專用人工智慧處理器,讓終端裝置在離線環境下,就能運行 ResNet、YOLO等深度學習網路。Kneron NPU為完整的終端人工智慧硬體解決方案,包含硬體IP、編譯器(Compiler)以及模型壓縮(Model compression)三大部分,可支援各種主流的卷積神經網路(Convolutional Neur al Networks;CNN)模型,如Resnet-18、Resnet-34、Vgg16、GoogleNet、以及Lenet等,以及支援主流深度學習架構,包括Caffe、Keras和TensorFlow。

Kneron NPU IP功耗為100毫瓦等級,超低功耗版的KDP 300甚至不到5毫瓦,全系列產品的每瓦效能在1.5 TOPS/W以上。在架構設計上,運用卷積核拆分(Filter decomposition)技術,將大卷積核的卷積運算區塊分割成多個小卷積運算區塊分別進行運算,然後結合可重組硬體卷積加速(Reconfigurable Convolution Accelerating)技術,將多個小卷積運算區塊的運算結果進行融合,以加速整體運算效能。透過Kneron先進的模型壓縮(Model compression)技術,則能將未經優化的模型壓縮數十倍。記憶體分層儲存技術(Multi-level caching)可減少佔用CPU資源以及降低數據傳輸量,進一步提升整體運作效率。此外,Kneron NPU IP能結合Kneron影像辨識軟體,提供即時辨識分析、快速回應,不僅更穩定,也能滿足安全隱私需求。由於軟硬體可緊密整合,讓整體方案體積更小、功耗更低,以協助產品快速開發。

  •     按讚加入DIGITIMES智慧應用粉絲團
更多關鍵字報導: 耐能 人工智慧 NPU