

The development and applications of the Taiwan 2050 Calculator

Dr. Robert Y.Z. Hu
General Director of GEL, ITRI
2015 / 02 / 10

Outline

- Project background
- Tools development
- Features of Taiwan 2050 Calculator
- Functions and applications
- Engagement

Energy in Taiwan:

- Around 98% energy use relies on imports
- Highly depends on fossil fuel (90% of energy supply)
- Industry sector is the biggest energy consumer
- Increasing demand for both energy and electricity

(source: ITRI)

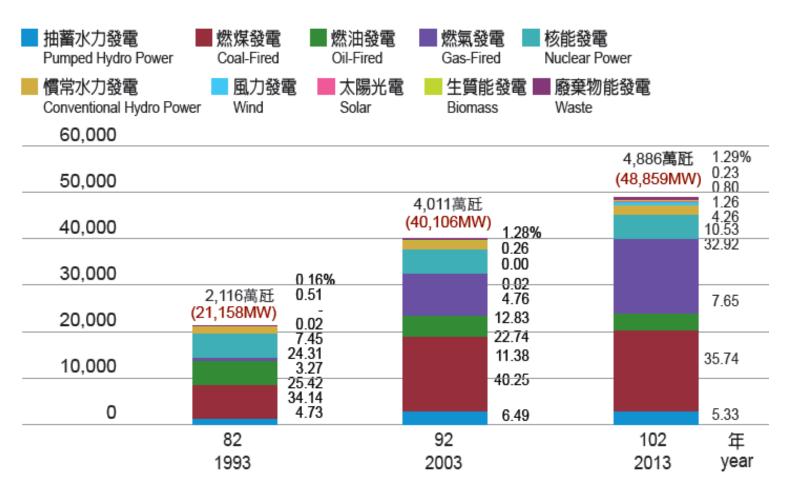


Fig: Power installed capacity in Taiwan (source: BOE)

Energy Challenges of Taiwan:

- No energy transmission link to other countries
- Barriers to develop power facility
- Obligation to decarbonize
- Nuclear development dispute
- No clear consensus on future energy development among the public

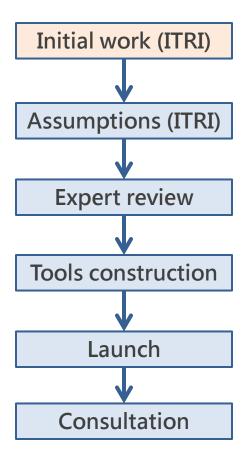
(source: ITRI)

What do we need in Taiwan?

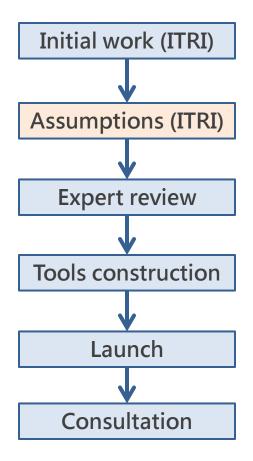
- A platform which collect public opinion and the energy technology information
- A tool which can do comprehensive analyses on electricity supply and demand
- An easy-to-use tool that can encourages public engagement on the discussing future energy mix
- A platform that can analyze the public opinion and communication
- A tool for energy education

We needs an open and easy-use energy discussion platform!

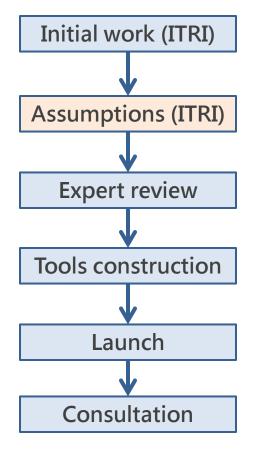
Taiwan 2050 Calculator portal: my2050.twenergy.org.tw



2030 Electricity Vision


Web tool

- Recognize project scope
- Initial research on methodology
- Determine sectors and options according to:
 - Share of the energy mix and demand (ex: electronic industry)
 - Technology prospective (ex: offshore wind power)
 - Development in dispute (ex: nuclear power)
- Finalize in 34 major scenario items (approximate 130 technologies)
- Determine the output indicators (ex. emission, price)



- Fixed assumptions
 - Collect data from existing models
 (ex: Taiwan MARKAL/TIMES model, MACC)
 - Data from experts in ITRI
- Scenario assumptions
 - Follow DECC's definition from Level 1(do nothing)
 to Level 4(most optimistic)
 - Initially determined in ITRI (through 10 consultation meeting, around 70 experts were involved)

(source: ITRI)

- Example: offshore wind development
 - Evaluate the real limit on land for the development. Considered factors: wind speed, water depth, environmental conservation areas, ship course, military areas and so on. (aprx.70GW)

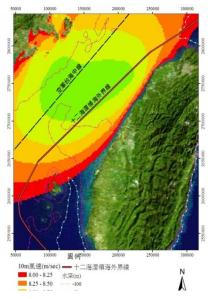
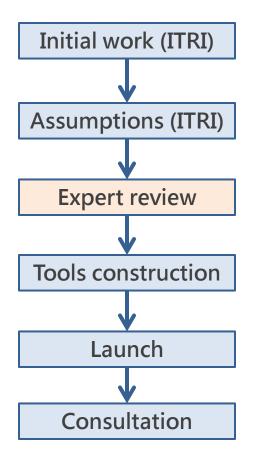
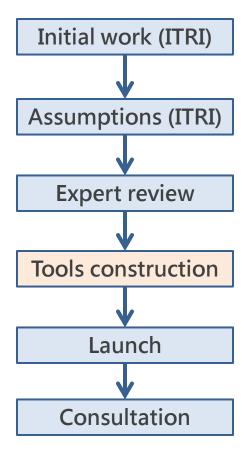



Fig: offshore wind resource map (source: ITRI)

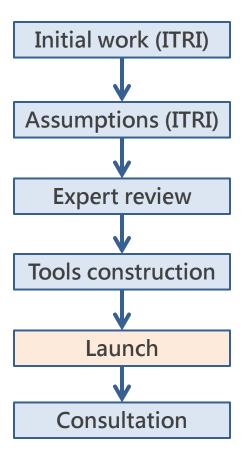
Capacity (MW)	Scenario	2015	2020	2025	2030	2035	2040	2045	2050
L1	No action	0	224	1162	2100	3600	3672	3672	3,672
L2	Ambitious	15	320	1520	3000	4200	5400	6600	7,800
L3	Very Ambitious	15	394	582	2645	5945	10895	14000	14,000
L4	Physical limit	56	582	2645	5945	10895	15845	30245	69,620

Table: Trajectory assumption on offshore wind development in Taiwan 2050 Calculator



- Expert review on all assumptions
- Over 100 experts from electricity system operator, academia, business, government, NGO, and other organizations participated
- Also review on preliminary sectorial result
- Suggestions were collected, and then modified the model. For those suggestions were not accepted(ex. lack of evidence), the team gave official responses.

(source: ITRI)



- Construct excel core model
- Design and build web tool and My2050 tools (based on the same excel core model)

Fig: Taiwan My2050 interface (source: ITRI)

- Tools were launched 7 months after its start
- ITRI become the fifth party to launch the tools
- Promotional activities followed

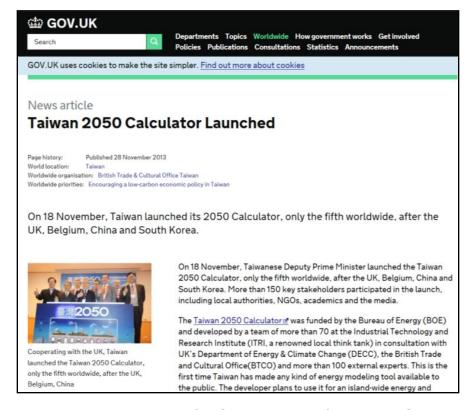
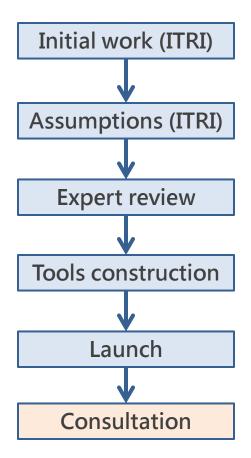



Fig: News on Taiwan 2050 Calculator Launch event (source: GOV.UK)

- All materials are available online (energy forum)
- Facebook pages were created as a channel for discussion
- Relevant materials were sent to regional energy think tanks for review
- Consultative meetings with major stakeholders: stateowned utility company, energy and environment authorities, industry leaders and NGO groups
- Suggestions on methodology, assumption and interface were proposed from all activities above
- New functions were suggested or inspired
- A game-based version(My2030) was proposed and has been developed to replace the previous My2050

- Energy demand was integrated with economic scenarios
 - GDP growth and industry structure
- Integrate with 130 energy technology development assumptions
- Integrate with Taiwan energy resource survey data and research

Fig: Cement CCS facility in Taiwan

(source: ITRI)

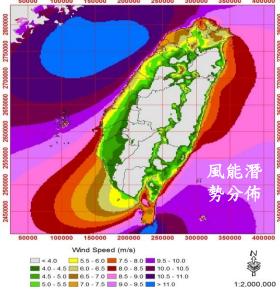


Fig: Wind resource map in Taiwan (source: ITRI)

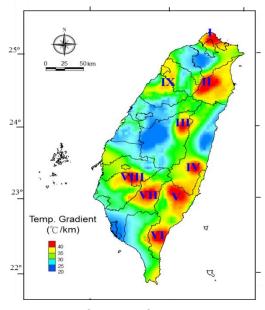


Fig: Geothermal resource map in Taiwan (source: ITRI)

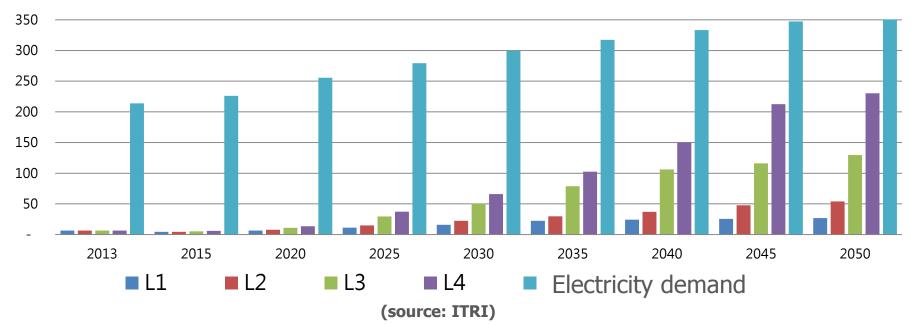
15

Localized energy technology items and energy usage patterns

- More essential information
 - Reserve margin capacity, Brownouts issue
 - Energy development marginal cost
 - Electricity price, economic impacts
 - Energy intensity, emission intensity
 - Land use for renewable energy development
 - Development difficulty index

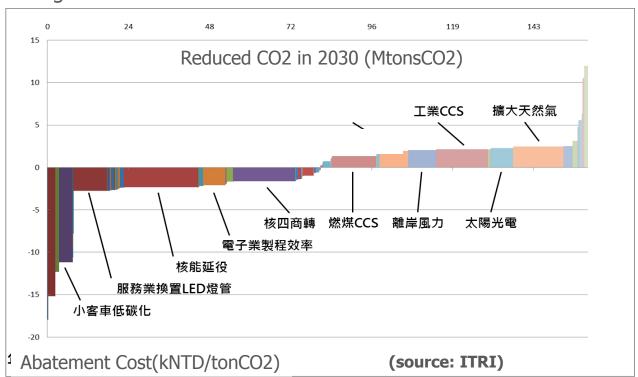
- My2030 electricity vision
 - A modified game version to make the tool more attractive
 - Users are guided to learn the features of each item
 - User need to choose a king (from 5 candidates) to start the game. The property of the king will reflect on the initial lever setting.
 - Summary pages to compare the initial choose and final pathway

My2030 electricity vision



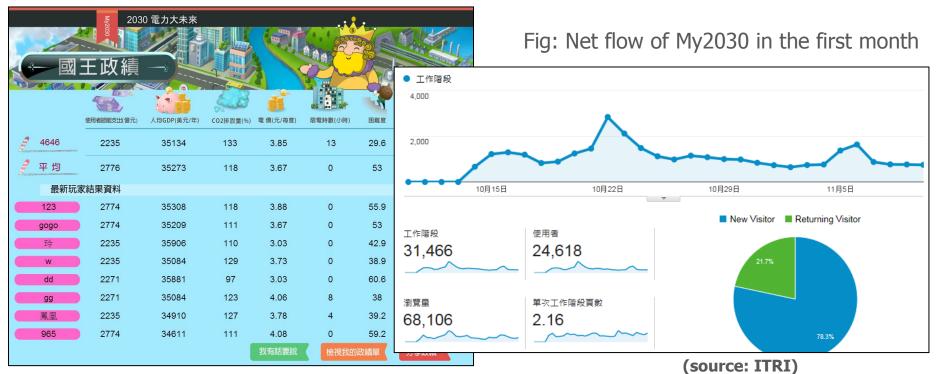
Functions and applications

- Possible alternative to power development and the impacts
- Analysis on the real potential of renewable energy development (and help to identify the challenges)



Functions and applications

- Brownouts simulation
- Electricity price
- Marginal Abatement Cost Curve (MACC)



Engagement

- Online tools (with some promotion scheme)
 - Web tool 7,000 visits in the first year
 - My2050 4,000 visits in the first month (1,300 pathways submitted)
 - My2030 30,000 visits in the first month (6,000 pathways submitted)

(source: ITRI)

Engagement

- NGO groups and bloggers post articles introducing the tools
- Workshops
 - 1 for general public 25 participants (collaborate with BTCO)
 - 1 for high school teachers 20 participants
 - 4 for university professors 90 participants
- Local promotion activities in book stores (for public, 8 events)

Fig: Workshop for general public at Taipei

Fig: Workshop in book store at Taichung

(source: ITRI) (source: ITRI)

Engagement

- Evidence base in the 4th National Energy Conference
- University and research
 - Adopted in postgraduate seminars at 3 universities
 - Sessions topic in general education courses at 6 universities (9 sessions, 533 participants)

Fig: Seminar in National Taiwan University
(source: ITRI)

Fig: General education course in National Chungshin University

Taiwan 2050 Calculator

Thank You!

