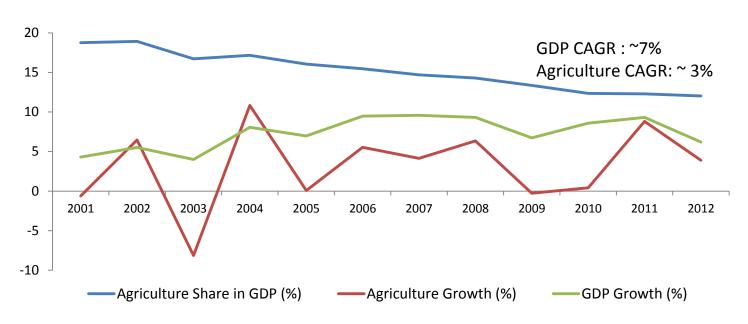
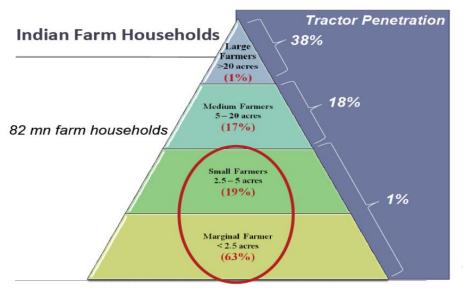
Agricultural Irrigation Pumping-Energy and Costing Scenarios

Mohd. Sahil Ali (sahil@cstep.in)

Introduction



Context


- India supports 17% of world's population and 15% of world's livestock
 - On 2.4% of world's landmass and 4% of world's water resources
- Agriculture accounts for 14% of GDP, 11% of exports and employs 52% of India's work-force

Trends in National GDP and Agriculture's Contribution

Land-Use in Agriculture


- Average Landholding sizes: 1.16 ha in 2010-11 vs. 2.28 ha in 1970-71
- Small & Marginal Farmers comprise 85% of all holdings and 44% of the total area

Source: Kotak Institutional Equities, kie.kotak.com

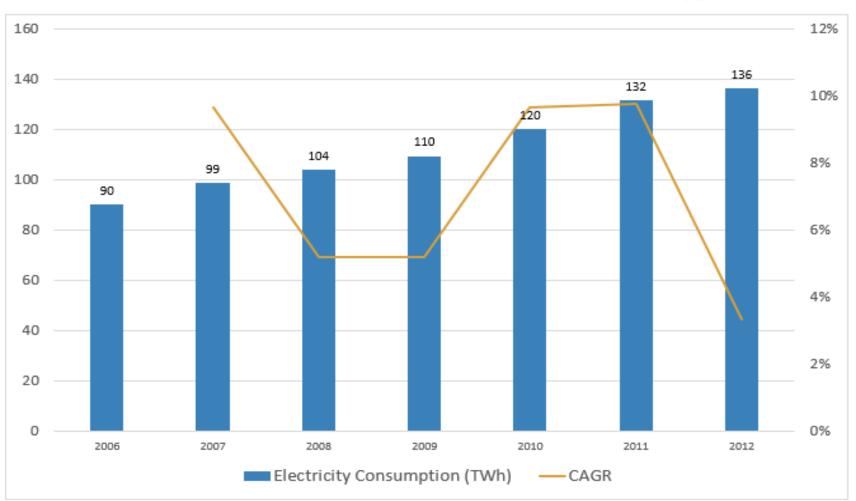
Cropping Pattern in India

Years	1990-91	2003-04	2009-10
Gross Cropped Area(M ha)	185.74	189.67	191.70
Net Sown Area (M ha)	143.00	140.71	140.02
Cropping Intensity (%)	129.89	134.8	137.26
Food Crops (M ha)	141.03	142.12	141.06
Non- Food Crops (M ha)	44.71	47.55	51.14
Net Irrigated Area (M ha)	48.02	57.06	63.25
Gross Irrigated Area (M ha)	63.20	78.04	86.42

Sources of Irrigation (2010)

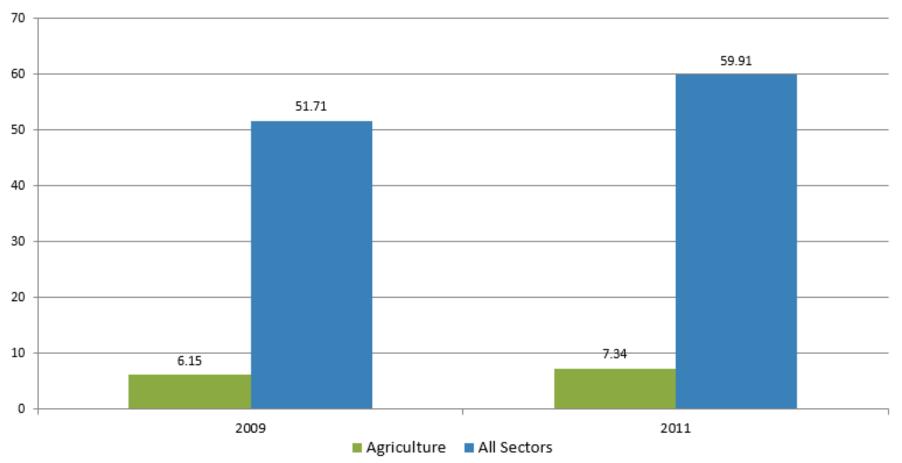
Source: Ministry of Agriculture, State of Indian Agriculture 2012-13

Energy Trajectories: Irrigation



Trend in Electricity Consumption

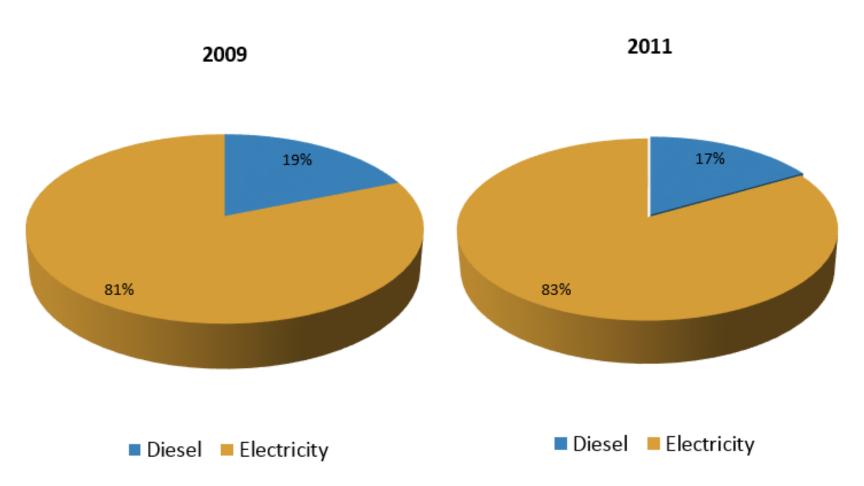
CAGR: ~ 7%



Source: Energy Statistics 2013. MOSPI

Trend in Diesel Consumption (mmtpa)

Share ~12%, CAGR: ~ 9%


Comparable to CAGR for electricity consumption in the same time-period

Source: PPAC

Estimated Fuel Mix in Pumped Irrigation

Source: Business Standard; MOSPI; CSTEP Analysis

Estimating all-India Pumping Energy Requirement (2012)

Methodology and Data

- Estimating pumping requirement for all land under agriculture barring that under surface irrigation
- Eight cases emerging from
 - type of pumps used (electric & diesel)
 - current and best efficiency assumptions
 - Min and max irrigation requirement (m³/ha) for eight major crops under cultivation

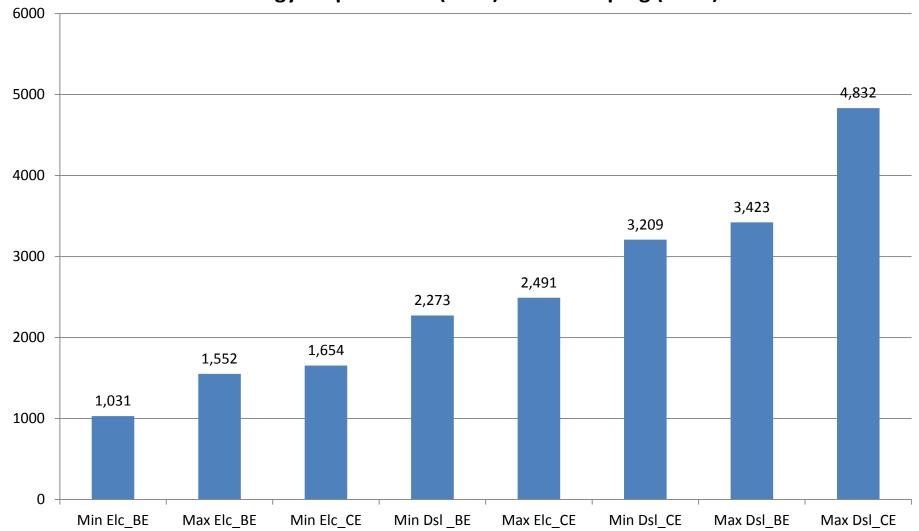
		·
NCA (m ha)	141	30% of this area cropped more than once a year
GCA (m ha)	195	
% Irrigated	45.25	40% of this is under surface xirrigation
Input Power for a 5 HP Electric Pump (kW)	6.42	Best Performance = 4.00 kW
Input Power for a 5 HP Diesel Pump (lph)	1.20	Best Performance = 0.85 lph
Average Discharge (lpm)	600	
Minimum irrigation requirement (mm)	580.91	Groundwater use Efficiency = 10-15%
Maximum irrigation requirement (mm)	874.73	

Estimating all- India Pumping Energy Requirement (2012)

Irrigation Requirements for different crops

Crop	GCA (m ha)	Min (mm)	Max (mm)
Paddy	43.97	1200	1200
Wheat	29.9	220	420
Cotton	12.18	210	725
Maize	8.71	150	1250
Pearl Millet	8.69	150	500
Sorghum	6.32	150	500
Groundnut	5.31	225	690
Sugarcane	5.09	620	1750

Total GCA~ 60% of all-India GCA


Source: Dr. K. T. Chandy (1995), Water Requirement for Different Crops

Estimating all-India Pumping Energy Requirement (2012)

Drivers and Assumptions

Energy Demand

- Demand for agricultural production
- Availability of other sources of irrigation → change in groundwater dependency
- Water Table
- Water efficiency- micro irrigation and protected cultivation
- Cropping patterns- intensive/off-season cultivation
- Policies
 - Aq DSM
 - State solar irrigation/pump-replacement schemes
 - Electricity tariffs
 - Major and minor irrigation schemes; micro-irrigation schemes

Pumping Efficiency

- Quality of power supply
- Technological improvements
- Capital costs of pumps
- Fuel Substitution

Choice of Fuel

- Electrification (RGGVY, 24x7 Electricity Supply)
- Operating Costs (Policy on Diesel Subsidy)
- Technological breakthroughs (cost of solar panels- Make in India)

Technologies

	Electric (kW)		Diesel	(lts/ hr)
Levels	Input	Improvement	Input	Improvement
1	6.00	7%	1.20	0%
2	5.25	18%	1.10	8%
3	4.50	30%	0.95	21%
4	4.00	38%	0.85	29%

Input under current efficiencies-6.42 kW for Electric and 1.20 lts/hr for Diesel pump-sets

Best efficiencies obtained by 2032 and stabilised thereafter

No efficiency improvement in solar pumping

Choice of Fuel

100	
1	

Fuel	Level A	Level B	Level C	Level D
Diesel	20%	10%	5%	-
Electricity	80%	85%	80%	75%
Solar	-	5%	15%	25%

Aggregate Pumping Trajectories (TWh)

Level 3

Level 4

Heroic Effort (Level 4)

• Savings from efficiency and reduction in ground water dependence (\sim 60%)

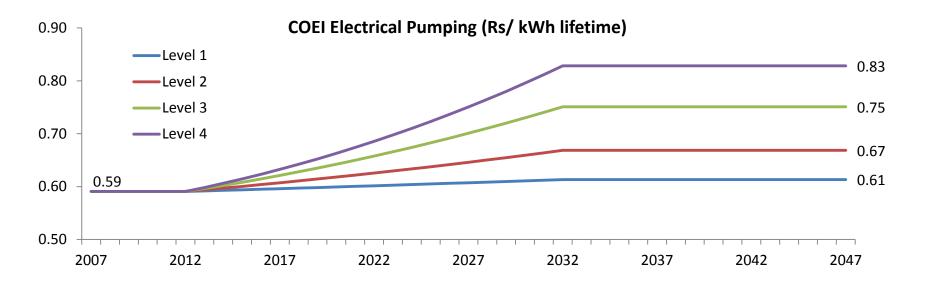
Overall, avoidance of ~ 80 GW, 511 Mt CO2

Thank You

Annexure: Costing

Data and Methodology (TWh)

Electric Pumps			Tech 1	Tech 1		Tech 2	
Rating (kW)		7.5		7.5			
Efficiency (at 10	00% electrical loa	ading)	61.91%	61.91%		73.60%	
Input Power			12.34		10.20		
Hours per year		Life (years)		7	10000	7	
Price			28,509		37,232		
Price/ kW output			3,741		4,964		
Elasticity	lasticity Input Power		-1.88				
Efficiency		1.73					
Price wrt base year input (6.42 kW) and efficiency (34.58%)		15,508					


		Diesel Pumps		Solar Pumps	
Rating (kW)		3.75		2.25	
Input		1.20 litres per hour		6.42 kW	
Hours	Life	500 5		1200	25
Price	18,000		6, 00, 020		

The above costs are annualised over the lifetime of pump-sets (INR/kWh lifetime)

Cost of Efficiency Improvement (COEI)

Efficiency improvement in electrical pumping is a continuous variable rather than discrete technologies (as in case of Commercial Lighting & Appliances)

COEI for diesel is zero, as specific energy consumption can be brought down to Level 4 without increase in costs (CIAE)

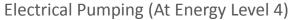
Costing Scenarios

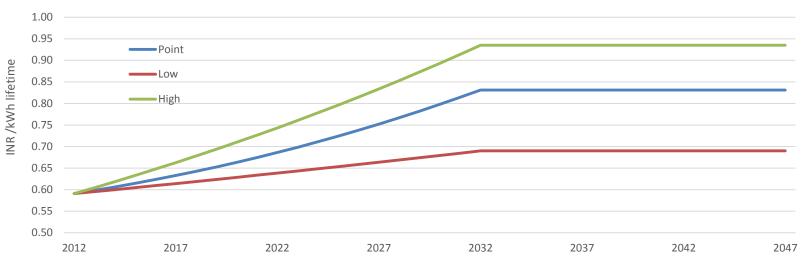
Assumptions-Irrigation Pumping

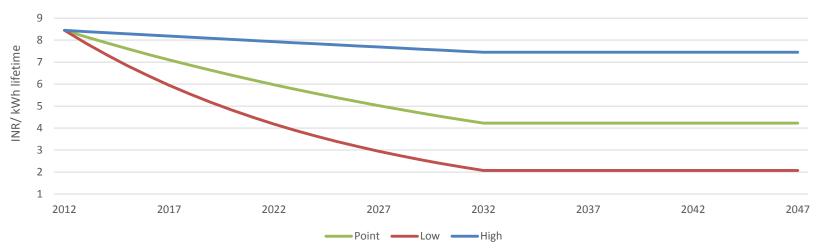
Base year costs (INR/ kWh lifetime)

	Cost
Electrical	0.59
Diesel	1.92
Solar	5.07

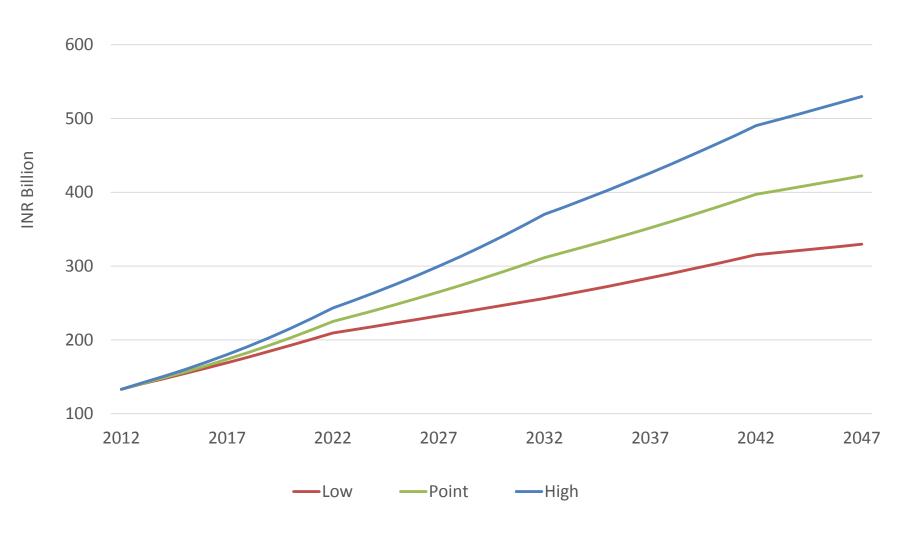
Future Costs (% change over base year)


	Low	Point	High
Electrical	-10%	0%	23%
Diesel	0%	0%	0%
Solar	-12%	-75%	-50%


The above changes obtain by 2032 and prices stabilise thereafter


Technology Cost Scenarios: Pumping

Solar Pumping



Energy Level Cost Scenarios: Pumping

