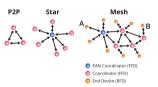

智慧無線連結 : 驅動現代生活與未來創新

作者: 周金鋒 主任應用工程師

從清晨的智慧鬧鐘喚醒新一天,到夜晚的自動調光燈營造溫馨氛圍,無線技術已深刻融 入我們的日常生活。無論是透過家庭自動化調節燈光與空調,還是利用智慧農業技術監測 十壤濕度,無線技術下在不斷革新我們與環境的互動方式。

單以藍牙而言,根據 ABI Research 到 2028 年的預測,預計每年將出貨75億台支援藍 牙的設備,未來五年的複合年增長率 (CAGR) 為 8%, 如圖 (一) 所示。因此,未來 支援 Zigbee®、Thread 和 Matter 等 802.15.4 標準的無線設備市場,預計在未來五年內將 實現顯著增長,充分展現其在物聯網(IoT) 與人工智慧 (AI) 領域的無限潛力。憑藉高效 能、低耗電與高可靠性,這些技術正廣泛應 用於智慧家庭、智慧城市與工業領域,為現 代生活帶來更多便利與創新。

圖(一)預估藍牙出貨的設備總數


在智慧家庭應用中,Zigbee 和 Thread 技術提供穩定且高效的連接,讓用戶能輕鬆控制燈 光、空調等多種設備,提升居家生活的便利性與舒適感;而在智慧城市中,無線感測網絡 的應用則進一步優化交通系統、能源管理與資源配置,全面提高城市運行效率。同時, 支援 Matter 協議的設備實現了跨品牌的互操作性,讓不同廠商的裝置無縫協作,大幅簡化 用戶體驗並提升整體智慧化程度。

隨著無線技術的不斷普及與標準化的加速推推,這些技術不僅加速了物腦網的蓬勃發展, 也為人工智慧應用的落地提供了強大助力。它們正在成為現代科技的重要支柱,持續推動 智慧化生活的全面實現,並引領我們邁向更高效、更互聯的未來。

• 加何選擇最佳無線網絡的拓撲與協議?

網絡拓撲結構的選擇對於 AloT 系統的性能與穩 定性至關重要。常見的拓撲包括點對點 (P2P)、 星狀 (Star) 和網狀 (Mesh), 如圖 (二) 所示:

- P2P: 適合簡單連接的應用,但擴展性有限。 ·Star:透過中央節點管理,便於部署與監控,
- 堂用於智慧家庭的小型網絡。
- · Mesh: 高可靠性與自我修復能力, 適合大規模 或關鍵性物聯網應用。

圖(二)無線網絡的拓撲結構及其應用場景

• 在協議選擇方面,BLE、Zigbee、Thread 和 IEEE 802.15. 等標準各有特色:

- · Zigbee 和 Thread:採用網狀拓撲,適合需要穩定連接的大規模智慧家庭與工業應用;
- BLE: 強調短距離低耗電, 適用於穿戴設備與智慧家庭配件;
- IEEE 802.15.4: 為多種協議提供基礎,支援高擴展性網絡,適合複雜的 IoT 場景。

撰擇合滴的拓撲與協議時,雲根據耗雷量雲求、傳輸距離、網絡規模和數據速率推行權 衡,確保系統在效率與可靠性之間達到最佳平衡(如表(一)所示)。

特性	BLE	Zigbee*	OpenThread	IEEE 802.15.4 MAC/PHY	CSA Matter Over Thread
頻段	2.4 GHz	2.4 GHz \ 868/915 MHz	2.4 GHz	2.4 GHz \ 868/915 MHz	2.4 GHz
連線距離	10-100 公尺	10-100 公尺 (擴展可達更遠)	10-100公尺 (擴展可達更遠)	10-100公尺	10-100公尺 (擴展可達更遠)
網路拓撲	P2P、Star、Mesh	P2P · Star · Mesh	Star · Mesh	P2P · Star · Mesh	Star · Mesh
應用場景	穿戴設備、IoT 設備、 健康監測	智慧家庭、自動化系統、 照明控制	智慧家庭、自動化系統、 IoT 設備	智慧電表、工業自動化、 感測網絡	智慧家庭跨品牌互通 (照明、HVAC、安防等)
數據速率	1~2 Mbps	250 kbps	250 kbps	250 kbps	250 kbps
連線數量	通常7個連接設備	可達數百設備	可達數百設備	可達數百設備	可達數百設備

表(一)多種協議規格技術及應用比較表

• 2.4 GHz 與 Sub-GHz: 選擇適合應用場景的頻段

在無線通訊中, 2.4 GHz 和 Sub-GHz 頻段各有其應用優勢。 2.4 GHz 因為全球通用且 支援高速數據傳輸,特別適合高頻寬需求的應用,例如數據同步與互聯網設備。其技術 成熟、成本低廉,已成為無線通訊的核心。然而,2.4 GHz 頻段常因使用者眾多而頻段 擁擠,干擾問題明顯,且其穿透力較弱,在遠距離或障礙物多的環境下性能表現不如 Sub-GHz (如表 (二) 所示)。

相較之下, Sub-GHz 頻段 (例如 868 MHz 或 915 MHz) 具備更強的穿透力與更遠的傳輸 距離,非常適合低耗電的應用場景,例如智慧農業和 IoT 感測器網絡。這使得 Sub-GHz 成為需要穩定長距離傳輸的理想選擇。

綜合而言, 2.4 GHz 和 Sub-GHz 的特性互補, 若能將兩者結合使用, 將有效滿足多樣化 的需求,成為構建無線通訊系統的最佳策略。

項目	2.4 GHz	Sub-GHz	
資料速率	高 (適合高速應用)	低 (適合低資料量應用)	
傳輸距離	短(數十公尺)	長 (數百公尺)	
穿透能力	弱 (易受障礙物影響)	強 (穿牆效果佳)	
耗電量	較高	低	
環境干擾	高 (頻段擁擠)	低 (干擾少)	
應用場景	室內、智慧家庭、高速資料傳輸	農業、遠距離、低耗電應用	

表 (二) 2.4 GHz 與 Sub-GHz 類段的性能與應用比較

• Microchip PIC32CX-BZ/WBZ 系列:無線連結的全能選手

Microchip 推出的 PIC32CX-BZ/WBZ 系列晶片及模組方案,以多協議支援能力和應用靈 活性為核心優勢,成為 JoT 領域的理想選擇,如圖(三)所示。WBZ 系列支援 BLE、 Zigbee、Thread、MiWi™ 和 802.15.4 MAC/PHY 等多種協議,單一晶片即可滿足多協 議的雲求,大幅降低設計複雜度與 ROM 成本。

DCH J IIII - J -	/ TIMIT EVENTI IX NEIX / D	2111 /2011		
PIC32C	X-BZ and WBZ Family .	Memory Size		
	- 1	PIC32CX-BZ3 WBZ35x	PIC32CX-BZ2 WBZ45x	PIC32CX-BZ6* WBZ65x*
	Why?	Lowest cost Smallest form factor Secure Boot, Touch	Multi-protocol Operation	Suitable for Gateway Larger memory More peripherals
	Cortex	M4F	M4F	M4F
	MCU Speed (MHz)	64	64	128
	Flash (kB)	512	1,024	2,048
	RAM (kB)	96	128	512
	GPIO	27	29	54
	Retention RAM (kB)	32	8	64
	Tx Output Power (dBm)	11	20	11
	Functional Safety Ready	√	√	√
	DAC	√	-	√
	Touch	√	-	√
	Ethernet, CAN, USB, QEI, LCC	-	-	√

圖(三)WBZ 系列的多協議支援與硬體架構解析

• 多協議應用場景

如下是 PIC32CX-B7/WB7 系列能夠支援多個協議的應用:

BLE:支援 BLE 的 Multi-roles 功能,可同時作為 Central 和 Peripheral 的角色,靈活搭建高效的樹狀網路 架構。例如,智慧家庭中的門鎖、燈具和溫控器與手機連接,實現遠端控制

MIWI™: 為 Microchip 自研的 MiWi 協議是一種類似於輕量級 Zigbee 解決方案,特別適合低耗電與簡單網路應用。在智慧停車系統中,可用於傳輸停車位狀態,實時顯示剩餘車位資訊;而在農業場景中,支援土 垃圾床咸测器组智等灌溉系統的數據傳輸。

Thread:支援 IPv6,具備網路的高靈活性與可靠性,適合智慧城市和智慧盒儲等場景。例如,可用於管理 路燈與停車位感測器,確保節點故障時網路仍能自動修復。此外,Thread 作為 Matter 標準的重要基石, 為跨品牌智慧家庭設備的互操作性提供了保障。

Zigbee®: 以其穩定的 Mesh 架構聞名,是大範圍低耗電網路的理想撰擇。它廣泛應用於智慧家庭和智慧大

802.15.4 MAC/PHY:該協議層為高度客製化應用提供基礎,例如電動車中的無線電池管理系統 (WBMS)。 實現即時監控電池健康狀態;工業監控中則能滿足對延遲與數據傳輸速度的高要求

• 未來展望

Microchip 的 WBZ 系列晶片憑藉其多協議支援與靈活應用特性,廣泛應用於下面幾個 IoT 關鍵領域:

- •智慧城市:WBZ 晶片支援集中管理路燈與交通系統,透過穩定無線連接,優化資源分配 與城市運營效率。
- •智慧農業:結合 AI 分析平台, WBZ 晶片能監控土壤濕度與氣候數據,為智慧灌溉與農 業管理提供即時支援,大幅提升資源利用率與生產效能。
- 智慧醫療: 整合 AI 平台, WBZ 晶片支援醫療設備實時傳輸健康數據,強化遠端診療與 健康管理的效率。

WBZ 系列晶片以穩定高效的無線技術,推動 IoT 智慧應用的落地,是連結各類創新場景 的重要基石。隨著 IoT 與 AI 技術的不斷融合,智慧家庭、智慧城市與智慧農業等應用將 持續升級,為現代生活注入更多便利與價值。

展望未來,Microchip 將持續推動無線技術創新,與 AI 平台及其他前 沿技術攜手,助力客戶打造高效、可靠的 IoT 解決方案。

立即行動!聯繫 Microchip 業務窗口,獲取專屬開發支援! 掃描下方 QR碼,立即試用 WBZ系列,體驗多協議靈活應用的威力! (Wireless Connectivity Solutions | Microchip Technology)

聯繫信息 > Microchip 台灣分公司

電郵: rtc.taipei@microchip.com 聯絡電話: • 新竹(03)577-8366

・ 高雄 (07) 213-7830 ・ 台北 (02) 2508-8600

技術支援專線:0800-717-718

