智慧應用 影音
產品標準規格對現代半導體產業景觀的形塑 (三):車用半導體零件的統一標準建立
電動車及自駕車是未來最大的半導體應用領域。汽車產業每年市場超過2兆美元,超過手機、PC、伺服器等市場的總和。2022年電動車的銷量已經超過1,000萬輛,佔整體汽車市場的比例高達13%。電動車/自駕車預計在2030年的製造成本中,有50%會來自於半導體;2040年後由於自駕車趨於成熟,可能更會高達70%。電動車/自駕車與半導體的相互依存程度不言而喻。電動車/自駕車用半導體零件目前並沒有齊一的規格。以半導體其他應用—如前述的DRAM經驗來看,半導體零件的規格制定會大幅降低半導體零件成本,進而降低電動車/自駕車售價、擴大市場,對汽車和半導體產業是個雙贏的策略。但是有部分汽車業者似乎又想走回過去電子系統業者的老路:垂直整合、深入半導體製造環節。具體的例子有比亞迪、博世(Bosch)等。特別是在COVID-19(新冠肺炎)期間,汽車廠商經歷零組件斷供困境,對於整個汽車產業的供應鍊有直接掌握的強烈渴望。汽車廠垂直整合進半導體的考量可能來自於強化核心競爭力。如果一部車子的製作成本有50%,甚至70%來自於半導體,則可能汽車價值的創造也大部分來自於半導體。核心價值相關的硬體全部外購,無疑是把自己降格成組裝廠,無法在激烈的競爭中立足。汽車產業與半導體產業的垂直整合,表面上還有其他的好處。車用半導體零件由於沒有統一標準,很多是客製化的,汽車業者與IC設計公司的溝通是另一種成本,垂直整合可以大幅削減客製化的交易成本。另外,車用半導體零件的驗證期通常很長。半導體設計、製造內化在汽車公司內後,驗證的周期可望大幅縮短。但是訂定車用半導體統一標準、促使垂直分工成為可能進而獲得好處,我認為會比垂直整合的好處還是要大。除了前述的擴大規模經濟、降低成本、加速研發進展等好處外,還有對汽車產業特有的好處。譬如統一的規格可以加速立法推動,也可以建立世界公認的驗證平台,加速零件上市的速度等好處。國際半導體產業協會(SEMI)已開始推動車用半導體的統一標準。 
產品標準規格對現代半導體產業景觀的形塑 (二):DRAM標準規格改變的產業型態
當DRAM標準規格問世後,馬上改變產品的市場競合規則。DRAM有JEDEC(Joint Electron Device Engineering Council)制定的規格,各公司的產品在電壓、頻率、訊號序列、I/O管腳等定義是完全相同的;也就是說,把模組條上的一顆DRAM置換成另外一家公司相同規格的DRAM,理論上是可行的。所以產品的競爭領域就只侷限在產品推出的時間、成本(製程和良率)和可靠性上。先推出的新標準規格產品雖然市場較小,但享有較高的溢價;用較先進的製程來生產相同規格產品的成本顯然較低。這兩個因素是產品規格標準化後產生的內建機制,迫使各廠商奮力研發新製程。市場面上產品規格的統一標準化,意味著產品的大宗商品化(commoditization)。大宗商品市場的特性是供應商與顧客的交易程序簡單、但是黏著度不高。由於同質商品流動性高,而且與計算相關的系統應用對DRAM的使用量很有彈性—當DRAM佔成本比例時就少買些,所以市場對供需平衡的敏感度極高。大宗商品的價格起伏幅度極大,這也解釋為何記憶體市場經常性的面臨一歲一枯榮的景況。由於大宗商品的產品價格是主要的競爭因素之一,較低的價格讓應用方的系統成本也隨之降低,銷售量變大,反過來回饋到DRAM市場變大。此乃大宗商品特性所帶來的良性循環。在產業的價值鏈中儘可能的增加企業加值節點,以增加企業的競爭優勢的策略,稱為垂直整合。過去很多電子、通訊廠商採用這個策略因而進軍半導體產業,早期的有如AT&T、IBM等,授權技轉給台灣的RCA也是一家系統公司。包括日本全盛時期的NEC、東芝(Toshiba)、日立(Hitachi)、富士通(Fujitsu)等,以及南韓三星電子(Samsung Electronics)、樂金(LG)、現代(Hyundai)原先都是系統公司,也都是依這思路進入半導體領域。DRAM有規格標準之後,相關的上下游零件—譬如CPU與DRAM,乃至於與系統之間就不需要有密切的合作,雙方一切照標準規格操課就行了。此導致一個重要的產業結構的變化:上下游垂直整合失去策略優勢。所以在DRAM環節的廠商可以專心致力於單一產品的量產,追求規模經濟。由較大營業額產生的較大利潤可以支援獨立的製程研發,進一步拉開與競爭對手的技術差距,整個產業慢慢往寡佔的方向演變。甚至只是「類標準」都有可能啟動相近的產業正向循環。記得PC是如何快速崛起的嗎?IBM首代PC問世後,第二代、第三代的PC XT、AT業界就有IBM compatible的類標準產生。這一方面是由於IBM在產業前期的主導地位,也因為在硬體方面英特爾(Intel)近乎壟斷的供應與微軟(Microsoft )Windows OS在軟體方面的強勢崛起。框架邊界的明確定義,促使與之協作各式零組件規格的迅速明確化,協力廠商可以立即專於注於單一產品的優化而建立規模經濟,整機的價格可以持續降低,再次擴大系統以及零組件的市場規模,這也是台灣半導體及電子與通訊系統製造業早期發展的契機。抽象地來說,規格化提供產業鏈各價值環節的連接標準規格,弱化垂直整合優勢,這使得單獨的產業鏈價值環節有生存的可能。當個別產業鏈價值環節專精於單一產品的生產,規模經濟得以建立。對於半導體產業而言,與系統製造業可以垂直分工是重要的一步。可以垂直分工意味著可以分取較多的利潤,進而投入尖端製程的研發,這對於半導體產業的發展、茁壯至關重要。由產業的發展歷史中也可以看到,原先由系統業者藉垂直整合伸向半導體業者幾乎全多褪去,僅存的也在努力剝離系統業務與半導體業務之間的關係。這是已發生過的產業歷史。
產品標準規格對現代半導體產業景觀的形塑 (一):DRAM標準規格的形成
在今年(2023年)記憶體價格大幅跌落之前,半導體產業中的產品個別市場排名分別是DRAM(13%)、NAND Flash(11%)以及CPU(9%)。如果將記憶體歸成一大類的話,其總銷售額還是遙遙領先其他類別,無與倫比。之所以會有這樣的排序,主要是因為計算機理論的von Neumann架構中,記憶體與處理器是唯二被提及的硬體,所以處理器與記憶體在各類計算相關的系統產品中—包括手機,都是用策略採購管理的最重要零件。記憶體中的DRAM有由JEDEC(Joint Electron Device Engineering Council)機構所制定的全球標準規格,譬如現在常見的DDR4、LP DDR4、DDR5等。JEDEC也制定NAND標準規格如ONFI(Open NAND Flash Interface)4.0、5.0等,雖然這個標準沒有如DRAM規格般的有較強的拘束性,但是各廠家的NAND產品在加上微處理器後形成的永久記憶模組也大致通用。記憶體有全球統一規格標準,此對現代半導體產業景觀的塑造有決定性的影響。最早的DRAM規格標準是JEDEC於1987年訂定的FPM(Fast Page Mode),這個年份距離電晶體的發明已經歷過40年,摩爾定律的恆常推進已經有些吃力。但是DRAM那時最大的應用市場是PC,新興大市場才出現不久,有蓬勃發展的生機。此時的主要半導體公司除了老牌的美國半導體公司如英特爾(Intel)、德儀(TI)、超微(AMD)、摩托羅拉(Motorola)、National之外,另外日、韓系統廠商如富士通(Fujitsu)、日立(Hitachi)、NEC、東芝(Toshiba)、三星電子(Samsung Electronics)等也紛紛成立半導體公司,這些就是後來在90年代DRAM市場競爭大放異彩的公司。DRAM有一段時間是整個半體導產業的技術驅動者(technology driver),主要的原因有二:一個是產品特性的因素,另一個是市場因素。DRAM中有超過一半的面積是記憶體陣列,其單元形狀相同,結構呈高度重複性。製程微縮對於晶片面積的減少、乃至於成本的降低效果是直接而且顯而易見的。因此,製程微縮成為此產品領域的主要競爭因素。市場因素方面,DRAM在80年代末期約略佔整體半導體市場30~40%的比例。也就是說,半導體市場盈餘主要落在DRAM領域,因此製程研發所需要的經費由DRAM來領軍是理所當然。台灣經歷過的產業發展,也見證此一過程。現在成為晶圓製造的常見設施與設備,如12吋晶圓廠、DUV、CMP等,在台灣都是先由DRAM廠商領先使用的,這種趨勢一直至2000年初後才開始反轉。 
智慧農業的成功因素
在台灣,農業物聯網感測設備供應商眾多,然而通訊技術和資料傳輸格式卻千差萬別,導致資料在不同系統間的流通和加值應用面臨著困難。為了解決這一重要問題,農業部於2023年4月27日推出「智慧農業感測資料格式標準與測試規範」。透過推動資料格式的標準化,提高農業物聯網應用領域中資料串接的效率,同時也降低開發成本,推動農業物聯網的深入應用。由中華電信負責「智慧農業感測資料格式標準與測試規範」的制定,遵循台灣資通產業標準協會(TAICS)所規範的制定流程。該標準參考國際標準組織(OGC)提出的物聯網標準框架,並收集來自產業、政府、學術界和企業等領域的專家意見。經過近一年的密集開會、討論和評審,最終完成標準的制定工作。「智慧農業感測資料格式標準與測試規範」確定59種不同的裝置類別代碼,同時提供農業系統平台層的應用程式介面(API)和資料傳輸格式,例如感測裝置的量測單位等。如果智慧農業系統能夠遵循這一標準交換資料,將能夠降低開發成本,實現資料的流通和數據的有效應用。此外,這一措施還將有助於推動多元化的智慧農業整合應用服務的發展,為農業領域帶來更大的創新和進步。為了推廣本標準規範的應用,農業部舉辦2場公開說明會。說明會中,我被邀請擔任講師,分享「智慧農業數據標準化與互通化之效益」,希望藉此激發更多智慧農業的創新應用和跨界合作機會。我的主題演講提到台灣數位轉型所面臨的主要困境,是大數據運用能力不足,特別是在資料格式定義上的不嚴謹以及不同格式之間的互通困難。儘管農業和環境資訊的量很大,但缺乏系統性的整理,導致這些資訊未能得到廣泛運用。大多數資訊都是個別使用,無法串聯和擴大規模。農業部的主導至關重要,尤其是在提供有效的機制方面,將小數據(規模在幾十萬以下)集結起來,擴大為大數據(規模在幾千萬以上),將有助於促進資料的更好利用和整合,推動智慧農業的發展。我同時提供一個巧妙的資料應用案例,透過資料生成技術,將白草莓病變檢測的準確率從87.50%提升至96.88%。這成果已在國際一流期刊上發表,並被日本雜誌《Pen》專題報導,主題為「2033年,科技的未來會是怎麼樣的?」其中,農譯(AgriTalk)使用5G技術的有機無毒白草莓成為台灣受到報導的智慧農業技術。透過分享這一主題,我與現場的農業資訊服務提供者深入交流,激發更多跨領域農業資料應用的想法,加速資料格式標準化的推動。台灣智慧農業已經邁入另一個發展階段,特別是在農業物聯網應用中的資料格式標準建立方面,其重要性日益凸顯,加速智慧農業創新發展更為必要。同時,農業部也鼓勵農業相關部門、企業以及學研單位共同合作採用這一標準,共同致力於打造智慧農業的美好未來。
細究台積電在車用晶片市場影響力 關鍵力量已不容忽視
車用晶片是2022~2027年營收年複合成長率最高的半導體應用類別,台積電在車用晶片市場的影響力究竟有多大?為何台積電在歐洲投資設立晶圓廠獲得相當大的關注?2023年8月8日台積電發布該公司董事會通過在38億美元額度內,投資位於德國德勒斯登的合資公司ESMC,ESMC將由台積電營運,台積電股權佔比將達70%,另由英飛凌(Infineon)、恩智浦(NXP)、博世(Bosch)各取得10%股權,預計ESMC的12吋晶圓廠在2027年底投產,採用12/16、22/28奈米製程,將以車用及工業用途半導體為主。以營收規模來看,汽車應用佔台積電營收比重從2021年的4%、2022年的5%,提升至2023年第2季時的8%,2021及2022年台積電的車用晶片營收年成長率,分別達到51%及74%,可見其成長動能。台積電與車用客戶互利共生DIGITIMES Research預估2023年台積電的美元計算營收雖將年減1成,但其車用晶片營收仍可達3成以上年成長率。台積電前十五大客戶中,在車用及工業用晶片市場較知名的有恩智浦、意法半導體(STM)、英飛凌及Sony等4家,其中Sony已經與台積電在日本熊本合資設12吋晶圓廠,此次與恩智浦、英飛凌的合作,將更深化與主要客戶及歐洲車廠的合作關係。台積電的前卅大客戶中,以非通用會計準則(non-GAAP)計算的毛利率平均超過50%,舉例來說, NVIDIA在2024會計年度第1季(至2023年4月30日,1QFY24)毛利率為70%(2QFY24尚未公布,但在AI伺服器帶動高階GPU需求下,預期將更高)、Marvell (至2023年4月29日)60%;第2季則包括超微(AMD) 50%、聯發科 47.5%(未公布non-GAAP毛利率,推估可增加1~2個百分點)、恩智浦 58.4%、意法半導體 49%、英飛凌 46.2%、Mobileye 72%、瑞薩(Renesas)57.4%、Microchip 68.4%等等。 非通用與通用會計準則主要差距,出現在股票基礎的獎酬,以及因企業購併產生之無形資產增值攤銷,這些在半導體等科技業常常發生。在通用會計原則下,這些需要扣除,進而影響企業財報上毛利率。上述10家公司最近一期的non-GAAP毛利率平均值為57.9%,由於客戶群還有毛利率更高的博通(Broadcom)、德儀(TI)、Analog Devices等公司,以及今年(2023年)毛利率較低的英特爾(Intel)及許多主攻消費性電子用晶片的公司,高低互抵之下,預估2023年客戶委託台積電代工晶片,產品毛利率平均55%。車用晶片終端市場影響力 台積電沒說出口的故事這其中,車用晶片毛利率通常比工業用、資料中心網通基礎建設用晶片再低些,例如瑞薩第2季工業用(含物聯網)晶片毛利率為62.6%,車用則為51.5%,可以根據恩智浦、意法、英飛凌及瑞薩4家與車用晶片較相關IDM廠商毛利率數據,得出主要車用晶片廠商平均毛利率51.3%。車用IDM/無晶圓廠(Fabless)客戶委託台積電生產晶片後,平均還能取得51.3%的毛利率,假設晶圓代工佔客戶銷售的晶片成本(Cost of Goods Sold;COGS)比重為75%(另包含封測及其他製造相關成本),表示台積電每1,000美元的代工產值,在半導體市場上的影響力,大約是2,738美元(即:1,000÷0.487÷0.75=2,738)。預估台積電2023年車用晶片營收可達54億美元,以1比2.74的影響力換算,台積電為客戶生產的車用晶片,在車用半導體終端市場的價值達到148億美元,相當於2023年全球車用半導體市場的20.6%。此一比重相較2022年全球前兩大車用半導體業者英飛凌、恩智浦市佔率各自約11~12%更高。雖說台積電生產的車用晶片由客戶再銷售到車廠或Tier 1車用零組件業者,因此台積電在車用晶片終端市場並無佔有率,但就晶片的終端市場價值或影響力而言,其實不亞於兩大車用半導體業者,具備相當重要的地位。台積電最先進的車用晶片3、5奈米製程仍將以台灣為生產基地(已發布N3AE 3奈米製程藍圖),海外晶圓廠則以日本、歐洲車廠較需要的12~28奈米製程為主。畢竟許多車用晶片並不需要7奈米及以下的先進製程,尤其是功率半導體及感測器。台積電在車用晶片代工市場的競爭者?只是,為何台積電前十五大客戶之一、全球第三大車用半導體業者意法半導體未參與此次合資設廠計畫?主要是意法半導體已經跟格羅方德(GlobalFoundries;GF)簽訂投資意向書,在法國Crolles合資12吋晶圓廠,該投資案亦將取得有關當局的補助。另外,GF在德國的德勒斯登本就有1座12吋晶圓廠,累積投資額超過120億美元,是2022年以前歐洲地區最大的半導體投資。台積電在2023年第2季車用晶片代工營收約12.5億美元,年成長38%;GF同期車用晶片代工營收雖然僅2.45億美元,與台積電有一大段落差,但第2季GF車用晶片代工營收是2022年同期8,200萬美元的3倍,急起直追態勢值得關注。
印度崛起:長期展望與當前發展
聯合國於2023年4月宣布印度總人口於該月超過中國,正式成為全球第一大人口國,讓世人更加重視印度的市場潛力。2023年7月28日在時代雜誌網站上,有篇公認是舉世頂尖印度經濟專家、哥倫比亞大學印裔教授Arvind Panagariya的文章,標題是「How India's Economy Will Overtake the U.S.'s」,美國是全球第一大經濟體,即便未來被中國大陸超越,仍可維持全球第二,難道現在就要把印度經濟超越美國提上企業國際布局的時程了嗎?Panagariya提到,在COVID-19(新冠肺炎)爆發前的15年間,印度實質GDP成長率保持在8%左右,美國不到2%。若印度能在未來20年間保持此一勢頭,並在其後維持5%的經濟成長,而美國始終保持2%的成長率。Panagariya認為這兩個假設都是有可能的。那麼,印度到2073年將超過美國的經濟規模。與其看法相呼應的,高盛(Goldman Sachs)在2022年12月出具名為「The Path to 2075」的長期全球經濟展望報告,預估2075年印度經濟規模將超越美國。高盛指出,2024~2029年實質全球經濟成長率預估為2.8%,其後每十年的CAGR會逐步往下,從2030~2039的2.5%,降至2070~2079的1.7%,主因來自於勞動力成長力道的趨緩,尤其到2075年時,全球人口已處於近乎成長停滯的情況。印度之所以在未來扮演更重要的經濟火車頭角色,在於其身為全球最大國的人口規模及人口紅利。但高盛報告與Panagariya文章共同指出,驅動印度經濟成長的關鍵是其勞動參與率及勞動生產力。勞動參與率需要更多的勞工,尤其是女性勞工。據統計,印度只有4分之1的15歲以上女性投入職場,而美國及中國的比例則都在5分之3以上;勞動生產力則需要更有技能的勞工。我的問題是,擴大勞工供給、提升勞工能力,都是在勞動供給端的改善,但需求端呢?誰來僱用勞工?2014年印度總理Narendra Modi於第一任總理提出的「Make In India」政策,目標是讓製造業產值年增12~14%;2022年前新增1億個工作機會;2025年製造業佔GDP達到25%。Modi第二任總理時,提出印度自給自足「Self Reliant India」政策,一方面強化在地生產,鞏固產業中上游,達成供應鏈自給自足;另一方面,增加國際競爭力、促進出口,也推動14個生產連結獎勵(PLI)計畫,透過高額補貼促進關鍵產業的在地化發展。若以2023年5月印度政府所公布的2022財年數據,印度目前製造業附加價值佔GDP比重僅為14.7%(以當前價格計),離2025年佔GDP 25%目標還有10個百分點差距,看來屆時是不可能達標了。而印度出口在2020~2022年3個財年間佔GDP比重逐年從18.7%提升至23.1%,看來是有所進展,但進口佔GDP佔比卻也從21.0%提升至26%,以致於仍有約500億美元的貿易逆差。但不可忽視印度政府拉抬本地供應鏈的決心。以最新突發的PC進口管制措施來看,若以2021年海關6碼HS Code檢視,印度貿易逆差前十大產品中,NB名列第八,勝於排名第九的手機零組件。印度激進做法背後有其本地化決策考量。從近日美光(Micron)宣布設立封測廠,及鴻海6億美元投資,乃至於印度製手機出口量持續提升,都可看到逐步升溫的產業發展動能。Panagariya在文章開頭,引用已過世的全球經濟史大師Angus Maddison的研究成果,說到:「印度在長達一個半世紀的時間裡一直是全球最大經濟體,到1820年為中國所超越,但在西方工業革命和歐洲殖民統治的雙重效應下,1870 年後英國成為世界最大經濟強國,至1900 年後再為美國所超越。然而,在人們愈來愈多談論亞洲崛起的情況下,世界經濟現在是否準備好恢復到原來的常態?」印度接下來的發展進程,50年後超越美國似乎過於遙遠而無需列入企業決策評估,但過往眾家經濟預測機構多估算印度至2030年後才將成為全球第三大經濟體,國際貨幣基金(IMF)2023年4月最新預測卻顯示,印度至2027~2028年便會超越德(第四)、日(第三),提早達成,那麼印度接下來的市場與產業發展就值得企業投以更多的關注了!
EV帶動功率半導體需求 2Q23車用半導體業者衝出佳績
2023年第2季半導體廠商法說會及財務報告陸續發布,在半導體五大應用領域,包含資料處理、通訊、車用、工業用、消費性電子中,預估2023全年僅有車用半導體的銷售額確定能較2022年成長,年增率預估達12%以上。其他四大應用中,僅工業用半導體銷售額大致保持2022年相當水準,其他三大應用均呈衰退。因此,全球前廿大半導體業者中,車用營收比重較高的業者,其營運也相對較傑出。延續上季營運表現所做類似的預估,全球前廿大半導體業者中,2023年營收確定可較2022年成長者僅有NVIDIA、博通(Broadcom)、英飛凌(Infineon)、意法半導體(STM)、Microchip等少數幾家。由於車用半導體是2023年第2季唯一表現亮麗的主要應用,因此安森美(Onsemi)及恩智浦(NXP)也由原先預估的2023年營收較2022年微幅減少,調升為2023年營收相較2022年-2~+2%,浮現正成長的機會。相較整體半導體市場較2022年預估減少12%,上述7家業者在對抗景氣循環衰退週期時,展現各自競爭力所在。2022年全球前六大車用半導體業者分別是英飛凌、恩智浦、意法半導體、德儀(TI)、瑞薩(Renesas)以及安森美,2023年第2季上述業者各自車用半導體事業營收,分別較2022年成長約25%、9%、34%、20%以上(具體數字未揭露)、3.4%以及35%。德儀表示,第2及第3季僅車用需求維持高水準,其他應用多呈弱勢。再觀察上述6家車用半導體業者,可以發現年成長較高的3~4家都是在功率半導體市場有較高佔有率的業者。隨著電動車的持續成長,帶動英飛凌、意法以及安森美有更為突出的表現。2022年全球車用功率半導體市佔率前四大廠商分別是英飛凌、意法、德儀以及安森美,這4家業者的2023年第2季車用半導體事業營收年增率均達20%以上。綜合各大廠看法,2023年第3季車用半導體銷售展望大致上與第2季持平,算是五大半導體應用中,少數能見度較好者。不過,從中可看出車用半導體的成長動能,在第3季有減緩的態勢。中長期而言,未來5年電動車相關的半導體需求年複合成長率上看20~25%,先進駕駛輔助系統/自動駕駛(ADAS/AD)相關半導體年複合成長率則在15~20%,兩大因素有助帶動車用半導體市場規模的成長。儘管每一台車所使用半導體金額愈來愈高,但隨著電動車零組件數量及架構的精簡,汽車平均銷售單價反而可能下跌,這一點跟單價愈來愈高的伺服器(尤其單價甚高的AI伺服器出貨量佔比愈來愈高)、智慧型手機(因配置更先進製程的應用處理器、功能更強大的鏡頭及更高解析度的CIS感測器,以及軟性/折疊式AMOLED螢幕等,使手機材料成本更高),倒是有所區別。
科學家,核子武器與政治
利用周末時間觀賞剛上映的電影〈奧本海默〉。在當學生的時候,就聽聞過「奧本海默事件」以及在美國的「麥卡錫主義」(McCarthyism),但這次是以奧本海默(J. Robert Oppenheimer)本人為中心,以電影手法完整地交代事件始末,包括二戰期間製作原子彈的「曼哈頓計畫」(Manhattan Project)。在二戰前,整個學術的重心都在歐洲。Oppenheimer在完成哈佛大學學業後,就負笈歐洲,最後在量子力學大師Max Born的指導下完成博士學位。通常博士候選人,都會被口試委員嚴格且鉅細靡遺地拷問,其目的是要讓新科的博士們知道:你的學術生涯才開始,不要太得意。但據聞Oppenheimer的口試很快就結束,其中一位委員說,還好我溜得快,Oppenheimer已經開始質疑口試委員了,由此可見其桀傲不遜的個性。曼哈頓計畫是由愛因斯坦(Albert Einstein)具名,寫信給美國羅斯福總統(Franklin D. Roosevelt),憂心納粹德國已經領先發展毀滅性核分裂武器所衍生而出,並由Oppenheimer擔任製作原子彈的計畫主持人。然而在第一顆原子彈還未試爆完成前,納粹德國就投降了,但日本還在頑強抵抗中。當時科學界開始遊說,希望停止曼哈頓計畫,但接任羅斯福的杜魯門總統(Harry Truman),為了減少美軍在太平洋戰爭的損失,先後丟擲2顆原子彈在日本的廣島與長崎。片中有一段敘述Neil Bohr訪問洛色拉莫士(Los Alamos),帶來納粹德國在發展核子武器的最新訊息,而納粹計畫主持人正是另一位量子力學大師Werner Heisenberg。Heisenberg在核分裂的理論計算上犯了個錯誤,導致納粹原子彈的發展受挫,而他本人在二戰後表示其有意拖延納粹在這方面的進展,但這至今仍是個科學懸案。美國最後能領先納粹德國製作出原子彈,除了Oppenheimer主持的曼哈頓計畫外,另一位關鍵人物是義大利裔的費米(Enrico Fermi)博士。費米博士恐怕是物理學史上,最後一位在理論與實驗都有傑出表現的科學家,就如同棒球場上的二刀流。費米博士在芝加哥大學足球場看台的地下室,建立核子分裂的反應堆。在最後關鍵時刻,他親自核對計算及調整實驗的反應堆,完成了人類第一次能夠控制且持續核子分裂的鏈鎖反應。實驗成功之後,對外所使用的暗語是義大利航海家登上新大陸。芝加哥大學在足球場原址也立了個紀念碑。Oppenheimer最終在戰後因被認定為共產黨的同路人,而被剝奪在原子核領域接觸新知識與發展的權利。影片中的泰勒博士(Edward Teller),被譽為氫彈之父,在曼哈頓計畫與Oppenheimer有不同的意見,執意要發展核融合的氫彈,導致他在戰後Oppenheimer的聽證會上,做出不利於Oppenheimer證詞,而後不見容於學術界。泰勒博士本人在四十多年前,曾受邀訪問台灣,全程由浦大邦博士陪同,訪問全台多所大學。當時我才大三,但有機會與泰勒博士近距離的接觸,並得到簽名及合照,他非常津津樂道與楊振寧教授的師生關係。在當時戰後的芝加哥大學,楊教授原本希望跟費米博士研習實驗物理,因為要建設中國需要實作為基礎,但無奈其動手做實驗的火候不夠,最後泰勒博士說服楊振寧教授跟他做理論的計算。當時,我們曾問泰勒博士在研究過程中,是否會因遭受挫折而產生低潮,他的回答居然是,我從沒經歷過低潮時刻。無獨有偶地,舊蘇聯時期的物理學家Andrei Sakharov,因為從事氫彈的開發,被譽為是蘇聯的氫彈之父。之後他本人開始致力於限制核武器的擴散,成為人權鬥士,卻不見容於蘇聯當局,而長期被軟禁在一小公寓內。他於1975年獲頒諾貝爾和平獎時,蘇聯甚至拒絕他出境領獎。不論是Oppenheimer、Heisenberg以及Sakharov,這幾位參與毀滅性核子武器的科學家,當初都基於愛國情操而參與,最終卻是由政治凌駕一切。Oppenheimer在甘迺迪(John Kennedy)總統時代被平反,而Sakharov在戈巴契夫(Mikhail Gorbachev)當政時也被平反了。但是遲來的正義會是正義嗎?李遠哲院長有次在訪問以色列,晚宴席中他請問鄰座政壇人士,如何解決以色列與巴勒斯坦間的問題?對方回答,你們科學家就只想要解決問題,我們政治人物是要與問題共處的。試想如果問題都解決了,就不存在政治人物了。愛因斯坦在美國使用原子彈結束二戰後接受訪問說,沒想到他們政治人物真的使用原子彈,我寧可去當個修錶匠,內心充滿著無奈。
電信流量工程之父Agner Krarup Erlang
丹麥人Agner Krarup Erlang是第一位研究電話網路流量的專家。Erlang是天才兒童,小學畢業後,以14歲之姿高分通過哥本哈根大學(University of Copenhagen)入學考試,大學當局考慮半天,還是決定不讓他入學。Erlang只好摸著鼻子回家,直到18歲時,再度贏得獎學金,進入哥本哈根大學。Erlang專精數學、天文學、物理及化學,並於1901年順利畢業。他講話精簡,不善交際,喜歡當一個旁觀者,朋友暱稱他為「Private Person」。Erlang於1908年加入哥本哈根電話公司(Copenhagen Telephone Company),開始研究電話交換機的效能。Erlang將機率理論應用於電話流量(Telephone Traffic)分析,在1909年發表第一篇相關論文,證明隨機的電話(Telephone Calls)到達電話交換機的時間,遵循Siméon Denis Poisson的分布法則(Poisson's Law of Distribution)。為了研究一個鄉村的電話交換機運作過程,Erlang親自帶著梯子在哥本哈根街頭趴趴走,並經由街道的人孔,爬入地底下的機房進行量測工作。Erlang最重要的成果,發表於1917年論文《Solution of some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges》。他提出完整電話流量的分析論述,發明有名的Erlang公式(Erlang's formula)來計算電話交換機忙線的機率。美國貝爾實驗室的研究員為了能夠讀懂Erlang的原始論文,還特別學習丹麥文。由於Erlang在排隊理論及流量工程(Teletraffic Engineering)有極大貢獻,因此在1944年,流量的量測單位以「Erlang」命名。將指數(Exponential)變數相加的新分布也以Erlang命名,稱為「Erlang Distribution」。瑞典電信大學創造一種電腦語言Erlang Programming Language,此語言後來移轉到瑞典電信巨擘愛立信(Ericsson)的開放電信平台實驗室,之後又被釋出成為開放源碼的計畫。愛立信採取這個名字,還有另一個原因:Erlang也是Ericsson Language的簡寫。這個語言精簡好學,很符合開發大型工業用即時系統(large industrial real-time systems)的分散式、容錯、多核心軟體的需求。Erlang有一特點,可以幫助我們思考和互動,進而寫成程式。它的程式碼可以「熱抽換」(Hard Standby;亦即可以一邊執行一邊升級,不用先暫停服務),如果移到多核心處理器的環境中執行,速度會自然變快(甚至有可能達到線性加速,n個核心就提升n倍)。電信商如T-Mobile,都使用Erlang開發分散式系統。除了電信系統外,Erlang也被用來開發財務系統或各種伺服器系統。我的實驗室發展物聯網平台IoTtak,也曾考慮使用Erlang開發分散式系統,聯接大量的物聯網設備。
語音技術的數位轉型
基於語音的多媒體物聯網(IoMT)逐見普及,被大量用於語音到文本(Speech to Text)的翻譯和語音控制應用。此類應用核心技術是自然語言處理。陳信宏教授和我的研究團隊發展一套語音談話的IoT應用開發平台,稱為VoiceTalk,提出一種新自然語言處理機制,自動語音辨識,藉此發展不少有趣的互動應用。2020年台灣總統大選電視辯論直播,公視新聞網和陳信宏帶領的語音辨識團隊合作,採用當時國立交通大學團隊開發的人工智慧(AI)語音辨識系統,將語音即時轉換成字幕。陳信宏指出,語音辨識有幾大挑戰,包括要有足夠的文字知識庫、要能夠處理語音雜訊,還有自發性語音的重複和修正等,比如講者說到「...好,好像」等字詞。除此之外,交大團隊也在視覺上下功夫,比如字體大小、字幕行數多寡等。2020年總統大選辯論直播,語音辨識AI搭配聽打員微調,提高字幕準確率。公視經理蘇啟禎表示,這次公共服務實驗難能可貴,未來技術更成熟,不排除應用於開票報導或其他大型轉播專案。VoiceTalk將語音轉換成繁體中文文本後,還要將之翻譯成不同語言。如今我們上網讀文章,遇到不同語言的文字,有軟體可進行翻譯,這是古代人想像不到的神奇應用。沒有翻譯文章的工具,人類的溝通就受到限制。方東美(1899~1977)在其巨著《中國哲學精神及其發展》寫著: 「偉大翻譯家實導更偉大創作之先河。」的確如此。方東美曾說:「聞所成慧(śrutamayī-prajñā)、思所成慧(cintāmayī-prajñā)、修所成慧(bhāvanāmayī-prajñā)乃哲學境界之層次,哲學功夫之階梯,聞入於思,思修無間,哲學家兼具三慧,功德方覺圓滿。」藉由翻譯,廣讀世界各地哲人的文章,是「聞入於思」的重要步驟。現今的資通訊技術,很容易達到這個目的。於是,我們也思考如何將VoiceTalk加入ChatGPT的plugin,以達到「聞入於思」的境界。這需要我們對歷史文化的認知。由翻譯引導出哲學、文化蓬勃發展的例子發生在八到十世紀間的阿拉伯世界。在此時期,巴格達的學者如火如荼將希臘作品翻譯為阿拉伯語。例如穆斯林史學家Ibn Ishaq(Abu Abd Allah Muhammad ibn Ishaq ibn Yasar al-Muttalibi )就以翻譯亞里斯多德(Aristotle)著作聞名於世;到了十一、十二世紀時,有一群基督徒住在被伊斯蘭統治的西班牙,接觸這些阿拉伯思想家的著作,以及亞里斯多德等希臘哲學家的阿拉伯譯作。這群基督徒將阿拉伯譯/著作再翻譯成拉丁文,造成十三世紀西方哲學與神學的黃金時期。古人必須千辛萬苦地翻譯文章,才能獲得知識,如今ChatGPT的普及,我們有智慧的文章翻譯軟體,比古人幸福多了。值得深思的是,如何在資通訊工具大量翻譯的知識中,獲得真正哲學與文化的精髓?