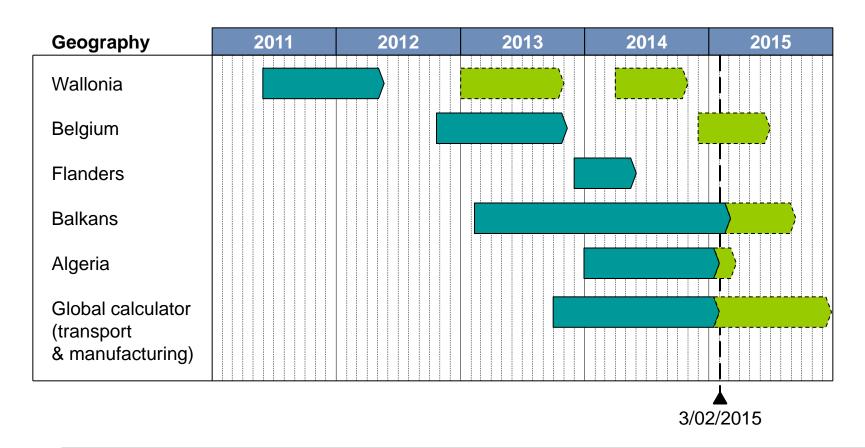


Climact support to the DECC models

Wallonia (2011-2012), Belgium (2012-2013), Flanders (2014), Balkans (2012-ongoing), Algeria (2014-ongoing), Global calculator (2014-ongoing)

& highlights on the Manufacturing sector

Taipei February 11 2015



Background

Manufacturing

Climact supports the DECC in objectivising the energy & climate change debate

Prior diving in manufacturing, let's step back on 2 dimensions, these geographical areas are different and the work is not a single shot

Climact perceives very different stakes from one geography to another

Stake examples per geographies

Belgium (federal) Wallonia & Flanders (regions)	 Is -80% to -95% making sense? What is the impact of raising intermittency, should the effort be on technologies or behaviour changes What is the burden size on non-ETS?
Balkans (Albania, Bosnia, Croatia, Kosovo, Macedonia, Montenegro, Serbia)	 Should we be against the gas pipelines, against hydro? How does corruption affect my pathways
Algeria	Should we extract fossil fuels now?Is gas low carbon?
Global calc	 What is the global picture? How do the sectors impact one another? Can we board companies as ambassadors of low carbon pathways

The flexibility of the excel is very useful to enable this

Climact perceives an evolving need, information access drives need for new information

Recent requests for additional information

- What is the job impact of the transition (ongoing in Belgium)
- What is the impact on resources (mini assessment for global calculator)
- What is the impact on my industrial sector (5 sectors roadmaps ongoing)
- What is the public cost of my pathway (subsidies, job impact, trade balance impact)
- Is gas good or bad for the transition (ongoing EU)
- Links between different countries to obtain regional perspective
- What is the water impact
- What is the air quality impact
- What is the cost of externalities

The open source dimension will play a role here

Agenda

Global **C**alculator

Background

Manufacturing

High level choices

Impact per lever

Global calculator provided an opportunity to revisit the manufacturing modelling

Global **C**alculator

The "Global" perspective enables to Include imported/exported emissions

The "new" project provided an opportunity to refresh the tool's structure

Global calculator partners

The "Global calculator", it's purpose and structure will be mostly covered by Tom Counsell & Tom Bain on Wednesday

The consultation approach was a key component (1/4): the cross-sector workshop

Federations and organisations

WBCSD, Cement sustainability Initiative

Roland Hunziker

Worldsteel Association

- Henk Reimink, Clare Broadbent
 CEFIC
- Peter Botschek, Isabelle Chaput (alumni)
 CEPI
- Marco Mensink

Zero Emissions Platform (ZEP)

Gert-Jan van der Panne

European Wood Federation (CEI Bois) Institute of Industrial perspective (alumni)

Julia Reinaud

World Aluminium

Chris Bayliss

The following persons/organisations were provided with an opportunity to review the model assumptions

Academic, consultancies & research groups

- **Dechema** Florian Ausfelder
- Fraunhofer institute, Marlene Arens
- Steel VDEh Marten Sprecher
- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)
- BEE (India)
- TERI

Companies in other sectors

- Dow Michael Mazor
- Vinci
- Toyota
- Bombardier
- GE

NGOs & cooperation agencies

- Greenpeace, Jan Vande Putte
- WWF
- GIZ

The consultation approach was a key component (2/4): the steel workshop

Iron & steel specific

Worldsteel Association

Clare Broadbent, Eldar Askerov
 European Steel Technology Platform

Jean-Pierre Birat

Eurofer

Jean Theo Ghenda

Steel Institute VDEh

Marten Sprecher

Fraunhofer institute

Marlene Arens

ArcelorMittal

Jean-Sebastien Thomas, Karl Buttiens

Tata Steel

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)

NGOs

- Greenpeace
- WWF

The following persons/organisations were provided with an opportunity to review the model assumptions

The consultation approach was a key component (3/4): the chemicals workshop

Chemicals specific experts

International Council of Chemical associations

Rachelina Baio

CEFIC (European Chemical Industry Council

- Peter Botschek
- William Garcia, Isabelle Chaput (cross sectoral)
 CPCIF (China Petroleum and Chemical Industry Federation)
- Dr. Ye Jianhui

Japan PetroChemical Industry Association Dechema

- Alexis Bazzanella, Florian Ausfelder
 Steel Institute VDEh
- Marten Sprecher

BASF

Susan Kuschel, Charlene Wall-Warren

Dow Chemicals

Mark Weick. Keith (K) Kenebrew. Michael (MH)
 The following persons/organisations
 were provided with an opportunity to
 review the model assumptions

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)

NGOs

- Greenpeace
- WWF

The consultation approach was a key component (4/4): the cement workshop

Cement specific

WBCSD, Cement sustainability Initiative

Roland Hunziker

US Portland cement association

David D. Shepherd

Cembureau:

- Alessandro Sciamarelli
- Claude Lorea
- Jessica Johnson,

Japan Cement Association Cement, Concrete & Aggregates Australia Lafarge

Mr. Vincent Mages

Italcementi

Ms. Manuela Ojan

Cimpor

· Mr. Paulo Rocha

The following persons/organisations were provided with an opportunity to review the model assumptions

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- Fraunhofer institute
- LBNL (China Energy Group)

NGOs

- Greenpeace
- WWF

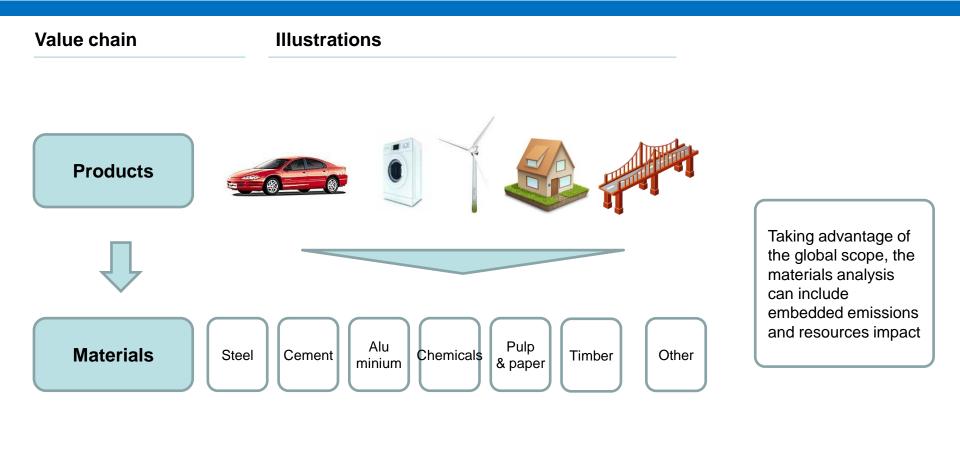
Most referred to analysis has been taken into account to make this model

Global **C**alculator

Main sources used for the manufacturing analysis

Sector	Organisation	Source
Steel	World Steel Association	 World Steel in Figures 2013 Steel Statistical year book 2013 Sustainable steel: Policy and indicators 2013 Steel's Contribution to a Low Carbon Future The three Rs of sustainable steel (Reduce, Reuse, Recycle), 2010
	Eurofer	 Low Carbon Steel Roadmap 2050 (IEA involved, led by BCG and German Steel Institute)
	EU JRC	 Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry
	UN work	
	ULCOS	Official website
	Midrex	 MidrexStats2011-6.7.12
	IEA	2013 Key world energy statistics2012 technology perspectives
	Cambridge	With both eyes open
		 NTNU & Cambrige University (2014 04 10 International Materials Education Symposium)
	US Environmental Protection Agency	 Available and emerging technologies for reducing greenhouse gas emissions from the iron and steel industry. North Carolina: US EPA. 2010

Manufacturing is modelled through 3 main lever groups, split into 8 lever families


Global **C**alculator

	Lever groups		Lever families		Lever descriptions		
1	Product demand	1.	Reduce demand ⁽¹⁾ & increase lifetime ⁽²⁾	•	End consumer demand of products Solutions for sharing the product amongst different users		
2	Material demand per product	2. 3. 4.	Smart design Materials switch Materials recycling	•	Amount & type of materials required to supply the products (includes new product types and substitution materials) Materials recycling potential		
3	Carbon intensity of material production	5. 6. 7. 8.	Process change Fuel switch Energy efficiency Carbon capture and storage	•	Production CO ₂ intensity of various improvements levers in each industry (~60improvements types)		

Reduce

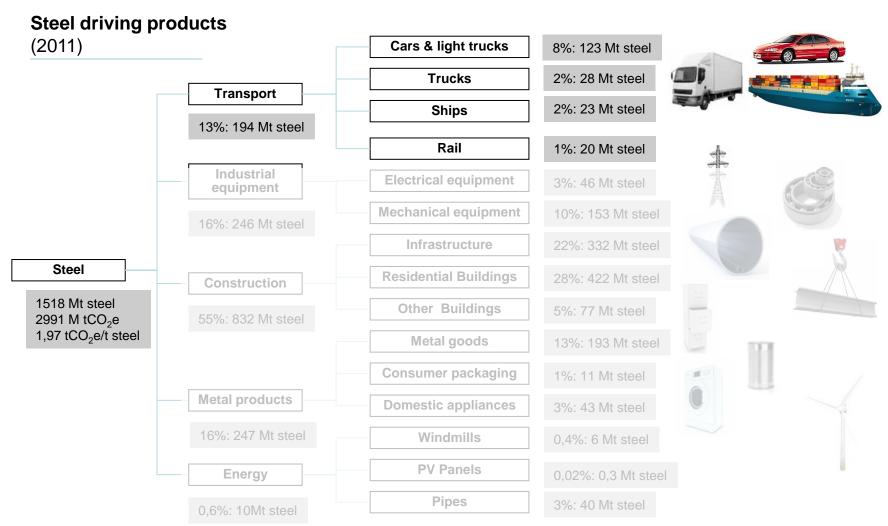
An innovative characteristic of this modelling is that the materials demand is derived from the product demand

Global **C**alculator

Most of the product demand is driven by the activity in the other sectors

Global **C**alculator

Background

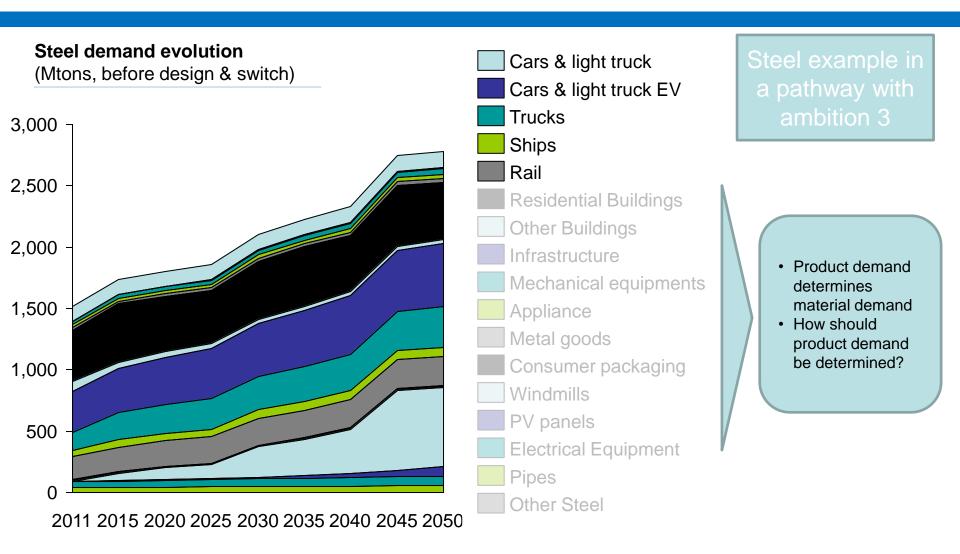

Manufacturing

High level choices

Impact per lever

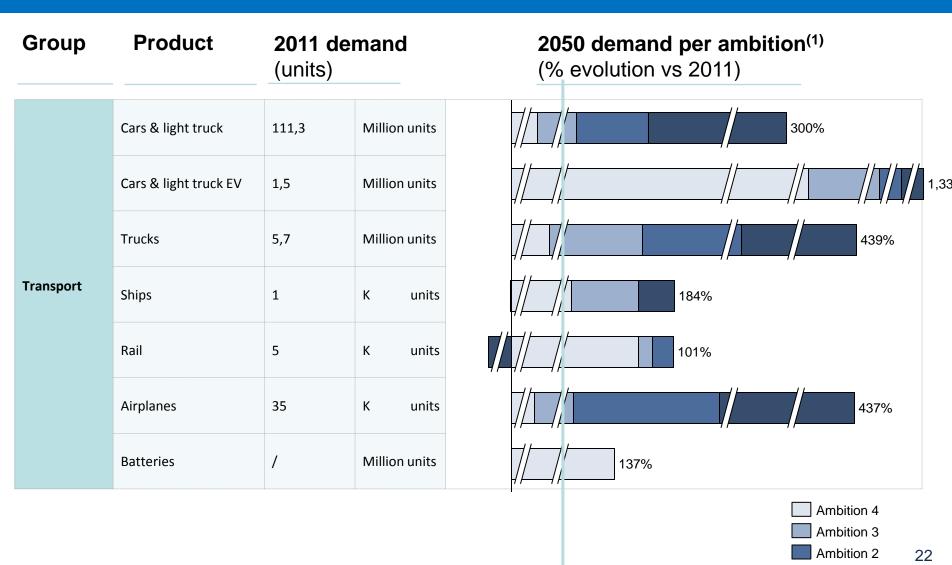
An innovative characteristic of this modelling is that the materials demand is derived from the product demand (1/2)

Global **C**alculator

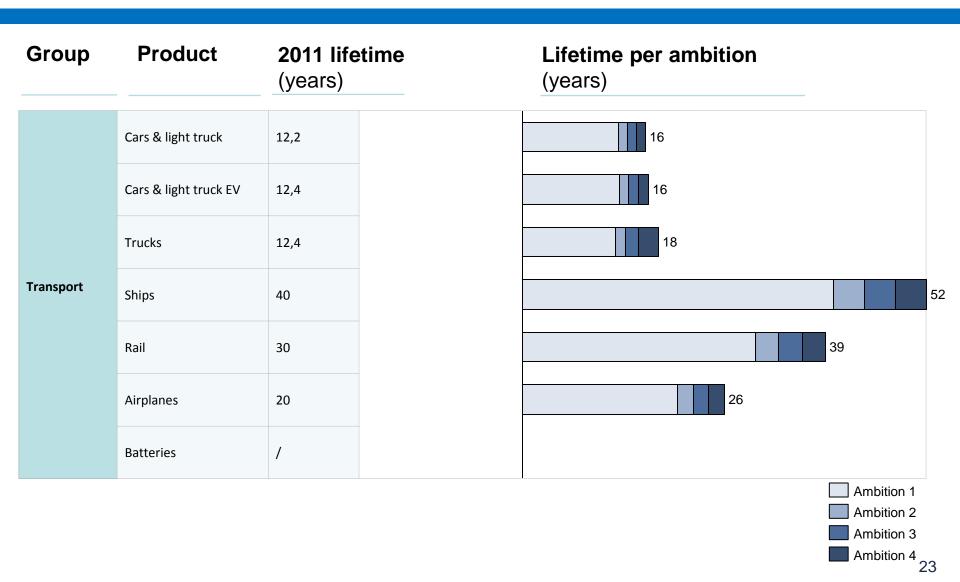


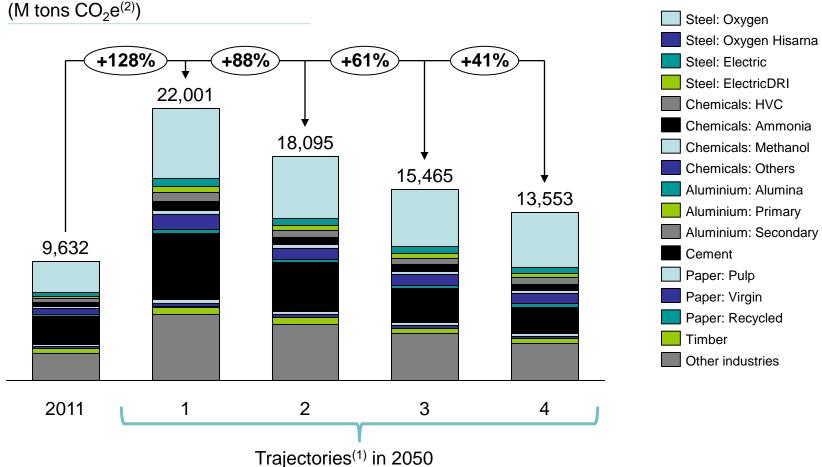
(1) There are other products, these have been diluted amongst the existing categories NOTES:

(2) Half the "Construction" steel is used for rebar with cement


An innovative characteristic of this modelling is that the materials demand is derived from the product demand (2/2)

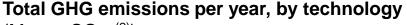
Figures of July 2014 Global Calculator

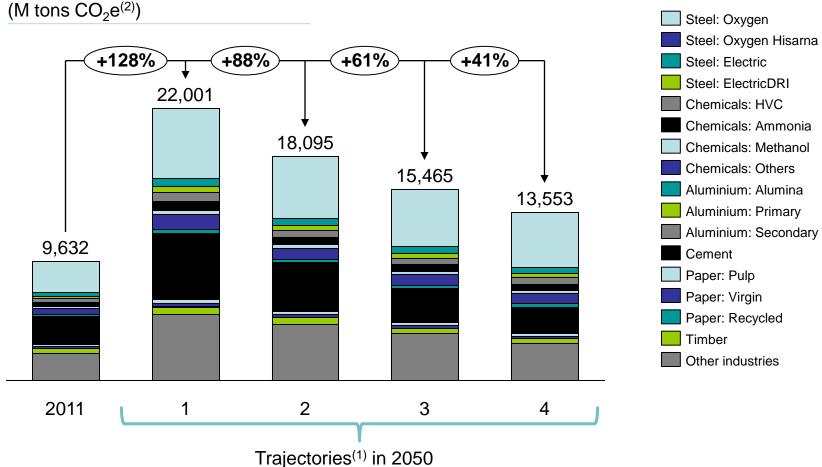

The lever choices in the other sector generate various product evolutions


The lifetime of the products also highly impact the product demand

Global Calculator

NOTE: (1) The population follows the average UN projection in all four trajectories

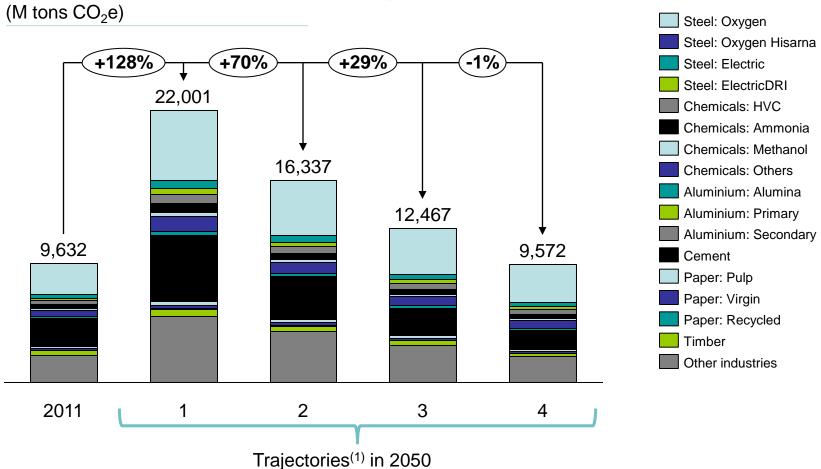

(2) Assuming biomass emits, not including electricity related emissions


Material demand / product: Design, Switch & Recycling Levers are assessed in each industry

List of actions & levers assessed

Indust	ry groups	Design	Switch	Recycling
Steel		Product DesignHigh strength steel	 In vehicles: To aluminium & to plastics (fibres) In buildings/Infrastructure: to timber 	 Product recycling % scrap based (for each various technologies exist)
Chemi cals	All	Product design	• /	Product recyclingMaterial recycling
	High value		 Substitutes steel, aluminium & cement in vehicles & buildings/infrastructure 	Green chemistry
	Ammonia	 Fertilizers composition 	• /	
	Methanol		• /	
	Other	 Green chemistry 	• /	
Aluminium		Product design	In Planes: To plastic (fibres)	Product recyclingMaterial recycling
Cement		Product design	 In buildings/Infr. : To plastics & to timber 	Composed/metallurgical cement
Pulp & paper				More recycled paperOther cellulose sourcesBio-refineries
Timber		Product design	Switch from steel &cement	

Global Calculator

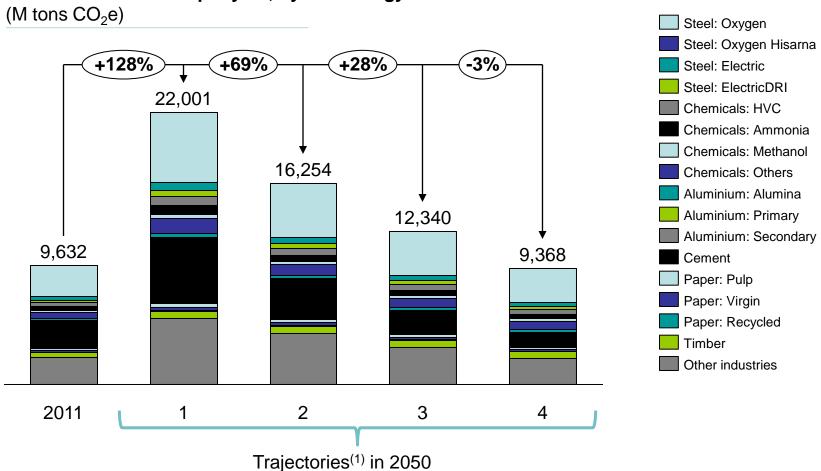


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

Total GHG emissions per year, by technology

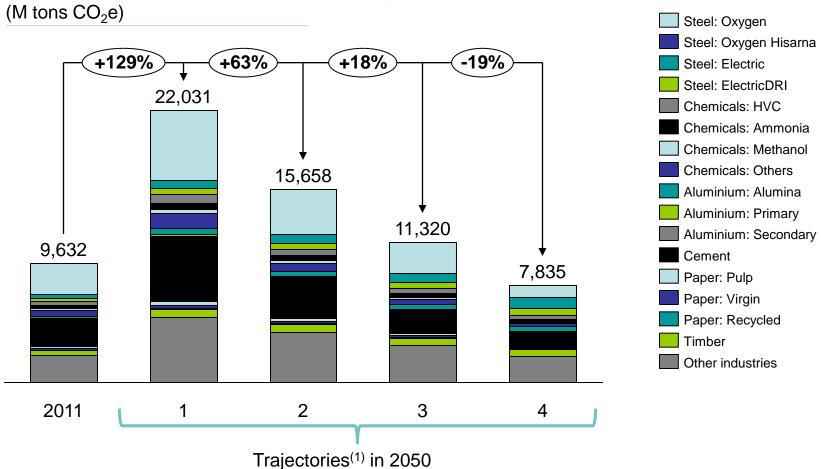


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

Total GHG emissions per year, by technology



NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

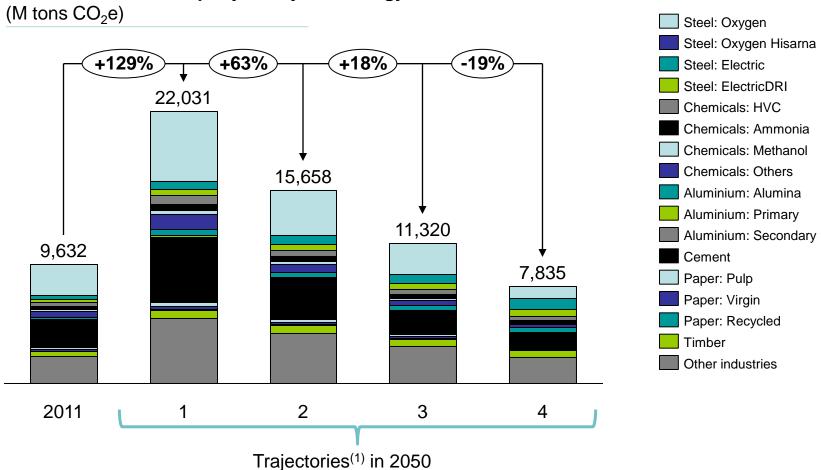
Total GHG emissions per year, by technology

NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Carbon intensity of material production

An additional ~50 levers then reduce the carbon intensity

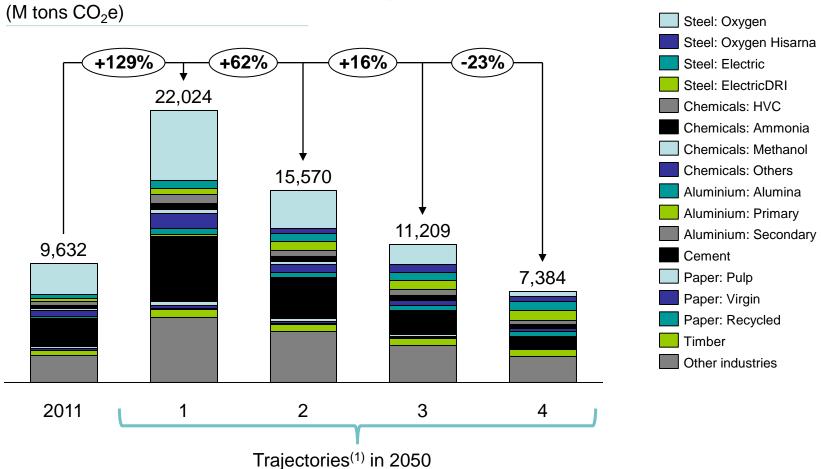

Global **C**alculator

List of actions & levers assessed

Industry groups		Process improvements	Alternative fuels	Efficiency	CCS
Steel		 Carbon material reduction Portion of Classic BOF/ Top gas recycling & Hisarna/ EAF DRI/ EAF scrap Smelt reduction, Hydrogen, Electrolysis 	Coke to gas injectionCoal PCI to biomass	Material efficiencyEnergy efficiencyCHP	• CCS
Chemi cals	All	Process intensificationCatalyst optimization	Oil to gas	Clustering and sustainable integrationCHP	• CCS
	High value	 Included in energy efficiency 		Energy efficiency	• CCS
	Ammonia	 Included in energy efficiency 		Energy efficiency	• CCS
	Methanol			 Energy efficiency 	• CCS
	Other	Included in energy efficiencySelective catalytic reduction	Hydrogen production by electrolysisNatural gas or biomass	Energy efficiencySwitch Mercury to membrane	• CCS
Aluminiu	m	 Included in energy efficiency 	Gas injection	Material efficiencyEnergy efficiency	• CCS
Cement		Dry process	 Coal & oil to waste & biomass 	Energy efficiencyCHP /heat recovery	• CCS
Pulp & pa	aper	Black liquor gasificationDrying innovation	Coal & oil to gasCoal & oil to biomass	Energy efficiencyCHP	• ccs
Timber		• /	• /	• /	• /

Global Calculator

Total GHG emissions per year, by technology

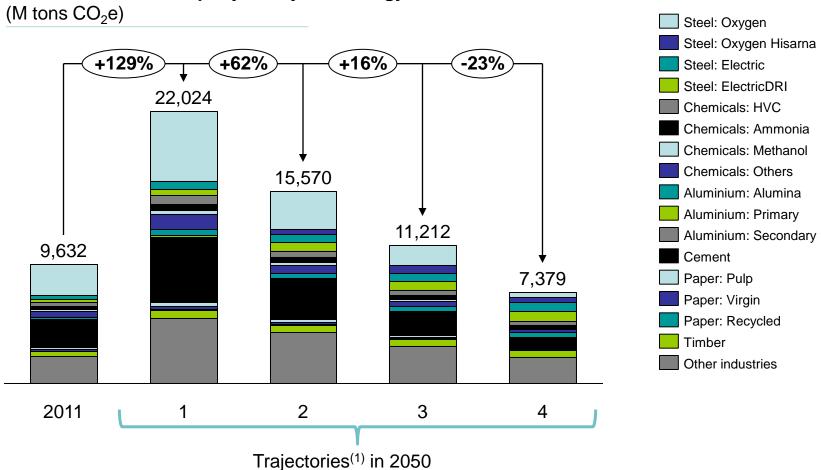


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

Total GHG emissions per year, by technology

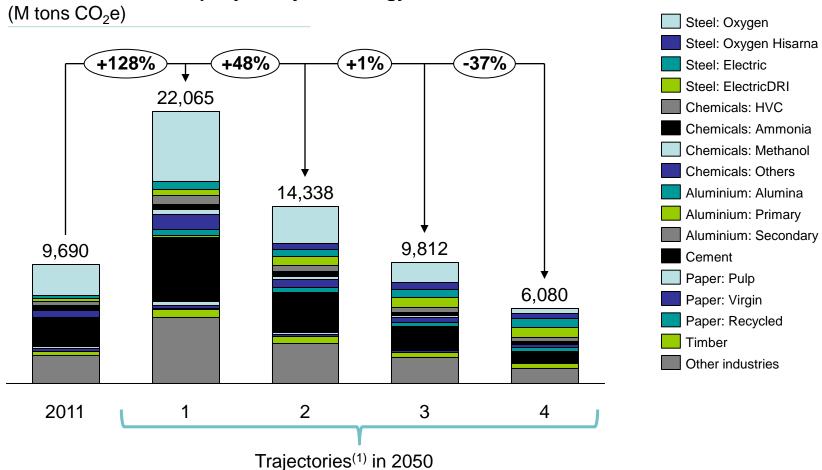


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

Total GHG emissions per year, by technology

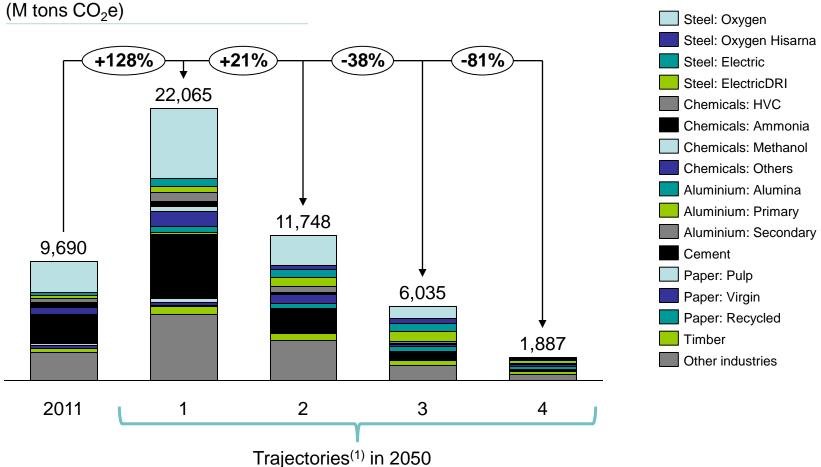


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator

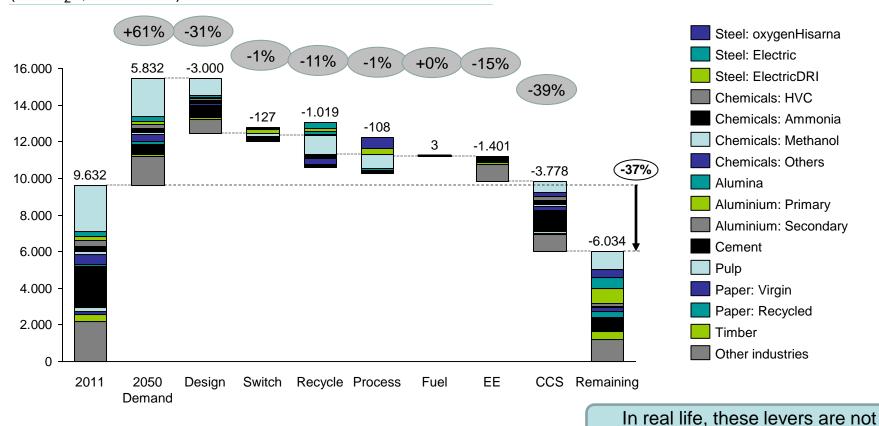

Total GHG emissions per year, by technology



NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

Global Calculator


NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Assuming biomass emits, not including electricity related emissions

What are the key messages on GHG emissions mitigation

Global **C**alculator

Total GHG emissions in 2050, for ambition level 3^(1,2), using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES:

- (1) The population follows the average UN projection in all four trajectories
- (2) Excluding biomass related reductions & electricity related emissions
- (3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

applied separately

Thank you.

Michel Cornet – +32 486 92 06 37 – mc@climact.com

