智慧應用 影音
EVmember
member
林育中
  • DIGITIMES顧問
現為DIGITIMES顧問,1988年獲物理學博士學位,任教於中央大學,後轉往科技產業發展。曾任茂德科技董事及副總、普天茂德科技總經理、康帝科技總經理等職位。曾於 Taiwan Semicon 任諮詢委員,主持黃光論壇。2001~2002 獲選為台灣半導體產業協會監事、監事長。
高頻寬記憶體風雲(三)產業生態樣貌可能的變遷
在討論HBM4標準介面對DRAM產業生態的衝擊之前,讓我們先回顧一下DRAM產業的現況。DRAM產業從2014年的20~22奈米製程,到2024年SK海力士(SK Hynix)跨入10奈米製程,整整花了10年的工夫。如果在過去摩爾定律還適用的年代,這樣速度的製程進展只能算是前進2個世代節點,這是過去用3年時間就可以取得的成果。DRAM製程進展如此遲緩當然是因為DRAM物理特性所造成的限制:DRAM的記憶單元是電容,而電容值(capacitance)與電容面積成正比。在製程持續微縮過程中,電容面積理當會變小,因而電容能保持電荷—就是記憶體單元中的訊號—的時間會縮短,因此每次製程推進時,還要維持電容值不變,這就成了DRAM新製程研發時的最大夢靨。沒有快速的製程推進,就無法在同一面積晶片上提高效能、持續快速的創造新價值。兼之DRAM進入1b、1a製程後,使用昂貴的EUV似乎無可避免,這讓單位面積成本的下降更為艱難。如果製程快速推進無法成為晶片增加經濟價值的手段,就得有其他增加價值的方式。譬如說,創造應用面的價值。目前DRAM在各類應用的標準介面相繼出爐正是此一趨勢的顯現,從原先主流的DDR(Double Data Rate),再到適用於移動系統的LPDDR(Low Power DDR,節能)以及GDDR(Graphic DDR,寬頻)、HBM(大容量、超寬頻)等。也就是說,DRAM產品雖然還有統一的介面標準,但是產品市場正逐漸走向碎片化過程之中。產品市場分化的下一步就是客製化。客製化產品的供應與需求中間的關係是專買與專賣,因此可以很大程度的避開大宗商品(commodity)市場典型的週期性起伏狀況。改變產業的生態樣貌、藉以避免業務及財務的大幅震盪等,也許是這些想客製化HBM記憶體公司的考量之一,特別是記憶體市場現在正在經歷為時不短的週期性價格低谷時期。但是市場開始分割細碎後,規模經濟的威力也會跟著降低。原先DRAM市場由3家大公司寡頭壟斷的局面也可能會因之改變。原先DRAM產業的進入壁壘主要是規模經濟以及先進製程相關的專利障礙。但是現在DRAM製程演進遲緩,兼之有許多小生態區開始出現,可以提供小公司的牛油與麵包,寡頭壟斷的市場生態有可能變化。這也許部分解釋SK海力士目前技術的想法。HBM4記憶體的堆疊部分仍然可能選擇統一的標準介面,在設計及生產上仍能大致維持規模經濟的効力;客製化的任務就侷限於底層的邏輯晶片。這樣的安排大致能維持規模經濟與客製化的均衡,獲取最大利益。只是產業的產品介面標準存在的前提,是所有產業中生產產品的公司以及產品使用者願意共同遵守。如果有些公司選擇專有介面,便無業界統一的介面標準。無論如何,這是2025年就應該會有答案的,而其結果將牽動DRAM產業的生態樣貌。
2024/5/20
高頻寬記憶體風雲(二)記憶體業者的選擇
記憶體產業中個別企業,如何考慮增加HBM頻寬技術方向的選擇呢?SK海力士(SK Hynix)是首先量產HBM的廠家,也是目前HBM市佔率最大的廠家,約佔市場一半的份額,其動向有指標性意義。延伸報導名人講堂:高頻寬記憶體風雲(一)進程技術的分野2023年11月Korean Business報導SK海力士的HBM4將採取2.5D扇出型先進封裝技術,目的是要省卻矽通孔(Through Silicon Via;TSV)昂貴的費用,而且有更多的I/O方式選項。報導中解釋封裝做法是將2片個別的晶片封裝整合成1個,而且無需使用基板,堆疊後厚度會大幅降低。但是完全沒解釋如何將高達12~16層DRAM上下線路連通,而這原是TSV執行的功能。之後的報導都是這個報導的衍生物,未有新的訊息。SK海力士4月19日發布新聞,說與台積電簽訂合作生產下世代HBM的備忘錄。這個合作採用什麼先進封裝技術呢?備忘錄中也未說明,只在末了表示會優化SK海力士的HBM與台積電目前正在使用的CoWoS(Chip on Wafer on Substrate)技術的整合,以響應一般客戶對於HBM的需求。備忘錄中還有一個亮點,SK海力士計劃使用台積電的先進製程來製造前述HBM底層的邏輯晶粒,增加額外功能,以滿足顧客客製化的需求。這個做法以下將展開討論。事實上,SK海力士自己已研發過銅混合鍵合技術,結果也在2022年、2023年發表在學術期刊以及會議論文集(conference proceeding)。另外,SK海力士與英特爾(Intel)和NTT於1月底發布在日本的共同投資,其投資標的也是矽光子。新聞中特別提到記憶體晶片與邏輯晶片的連接,顯然針對的是HBM與CPU/GPU之間連接的應用。只是這投資計畫於2027年量產,對於HBM4的生產是稍為遲了一點。無論如何,SK海力士是做好了兩手準備。台積電早已宣布於2025年開始量產矽光子,雖然起始的客戶可能是其他客戶,但是2026年肯定能用於HBM相關的生產,如果技術的選擇是如此的話。綜合一下上述訊息,SK海力士對於HBM4的規劃大致在原先2.5D封裝或3D封裝之間,取得價格與效能的優化;較長遠的目標則是移往更快、更節能的矽光子。三星電子(Samsung Electronics)也早已驗證以銅混合鍵合16hi DRAM堆疉的HBM,結果也早發表於期刊和會議論文集。三星也在2023 OCP(Open Computing Project)Global Summit中,發表其對於矽光子的想法。前文中類似CoWoS的結構與現今的先進封裝結構相似,開發較容易。但是因為HBM與CPU/GPU底下都得加裝光/電轉換器,而且中介層需要以光通道替代,成本無疑會更高;而HBM置於封裝之外的做法是新嘗試,可能需要更多的發展努力,另外還要腦律散熱問題。無論如何,三星也是做好兩手、短中期準備。但是三星還有自己的邏輯設計、製造能力,包括CPU/GPU的設計和製造生產,它的利害與考慮不一定與SK海力士會一致。美光(Micron)在HBM上是後進者,目前正在急起直追,因此發表或公布的技術方案消息較少。最近的報導是它與其他廠商正在共同開發HBM4,技術方案目前沒有詳細內容,報導只說傾向於採取與南韓廠商不同的方案。HBM4量產預計在2026會先上12hi的,2027接著上16hi的,資料引腳數量會倍增到2,048。HBM4如果有業界共同標準,在2024、至遲2025就應該制定標準並公布,目前似乎離達到產業共識還有一段距離。因為在異質整合技術的採用上仍留有變動空間,而且此一技術選擇將影響記憶體次產業的面貌,甚至整個半導體生態區的重新配置。 
2024/5/13
高頻寬記憶體風雲(一)進程技術的分野
高頻寬記憶體(High Bandwidth Memory;HBM)是具有高頻寬的圖形記憶體(Graphic Memory),其主要的功用是支援高效能運算(High Performance Computing;HPC)或人工智慧運算中與CPU/GPU聯合執行高速的平行運算。  HBM由數個DRAM堆疊而成,每個DRAM中又由許多容量較小的記憶體單元組成。大數量的小記憶體單元以高頻寬的I/O與多核的CPU/GPU相連接,當成平行算中使用的緩衝記憶體。 HBM的統一標準由JEDEC於2013年公布,2015年SK海力士(SK Hynix)率先開始量產。 以最近的產品HBM3E為例,其容量可達36GB,DRAM的層數為8~12層(8hi or 12hi)。最重要的,其資料引線(data pin)數目為1024,代表它可以同時提供1,024個數據平行儲存。為了實施如此高的資料引線,在堆疊DRAM與中介層(interposer)之間使用將近4,000個微凸塊(micro bump),而其間距(pitch)相當緊密—55微米,這已經接近微凸塊技術的密度極限。HBM在多層DRAM堆疊的底層中,還有一個邏輯製程的基底晶粒(base die)。DRAM層與層之間的信號由矽通孔(Through Silicon Via;TSV)連接。目前異質整合HBM與CPU/GPU使用的先進封裝技術為CoWoS (Chip-on-Wafer-on-Substrate),是2.5D先進封裝的一種。在此封裝中,HBM與CPU/GPU置於同一平面上。其下有一個中介層(interposer),HBM與CPU/GPU金屬墊(metal pad)中的信號透過與其黏著的微凸塊、由中介層內的連線(interconnect)送到另一邊的微凸塊上,這就是目前記憶體與邏輯晶片異質整合的工作架構。 當HBM要再進一步演化、擴大頻寬,預計其DRAM堆疊的層數將從原先的8~12層,再成長成12~16層。其數據引腳數則自1,024成長至2,048。所需要的微凸塊數目可能會超越以目前的封裝方式所能提供的。未來的HBM要與其協作的邏輯晶片會以何種方式異質整合,即為目前產業界看法有分歧的地方。  要提供更高的頻寬,目前看到的可能技術有2種:銅混合鍵合(copper-copper hybrid bonding)與矽光子(silicon photonics)。  銅混合鍵合的工作概念相當簡單,基本上是將2個分別製造的晶圓上重分布層(Reditribution Layer;RDL)面相對的黏貼在一起—金屬對金屬、氧化物對氧化物。這樣2個晶片之間的資訊傳遞就不必像傳統封裝的方式:先將一個晶片上的信號用與金屬墊(metal pad)連接的微凸塊引出,再用金屬連線將信號送到另一個晶片對應的微凸塊上。  銅混合鍵合大幅縮短信號傳送距離、降低相應功耗,也改善其他的物理性質譬如寄生電容(parasitic capacitance)以及電阻值。最重要的,它的金屬墊間距(metal pad pitch)可以降到10微米以下,最近的學術文章已開發出400微米的金屬墊間距。這個數據顯示用銅混合鍵合能提供比用微凸塊高1至2階秩的頻寬,對於HBM4的更高頻寬的需求顯然沒有問題,而且還有再進化的空間。  矽光子的基礎運作機制也很簡單:用光子來替代電子,成為傳遞資訊的主要載子。它的好處顯而易見:光子的速度比電子快100倍,而且光子在光纖中或光通道中傳導理論上不會發熱,不像電子在金屬中傳導一定會產生焦耳熱(joule heat)。這個事實的應用其實很早就開始實施了。資料庫之間、資料庫至家戸之間早就以光纖替代電纜,接下來的挑戰是在同一封裝中甚或同一晶片中使用光子傳導資訊此一機制,前者就是現在熱議的共同封裝光學元件(Co-Packaged Optics;CPO),而後者就是矽光子。  目前NPU、GPU元件都已進入CPO中試驗並取得成功。這是CPU/GPU與HBM的整合方案之一。實施矽光子的異質整合方法有2種。一種是沿用前述的2.5D先進封裝結構,將中介層的銅連線改變成矽光子的光通道。另外,由於利用光子來傳遞訊息,CPU/GPU與HBM兩頭都要裝上光/電的轉換元件。這個方法產業比較熟悉,但是成本較高。另一種方法是把HBM置於封裝之外,利用矽光子晶片線路與CPU/GPU連接。這個方法DRAM部分可以維持相當的獨立性,但是開發可能需要較長的時間。 相對的,銅混合鍵合在近年來已漸趨成熟。除了CIS(CMOS Image Sensor)早已派上用途外,像超微(AMD)將CPU與SRAM分別製造後,再用銅混合鍵合異質整合在一個3D先進封裝之中。這些都是此技術成功應用的範例。矽光子與銅混合鍵合就是現在產業界面臨的技術方向抉擇,這個抉擇的後果影響既深且遠。 
2024/5/6
產業垂直整合要多深? (二)
智慧型手機問世後,產業又重啟考慮垂直整合的議題。 PC有較長的歷史,而且CPU寡頭壟斷企業的地位近乎無可撼動,電腦業者可以藉垂直整合主要半導體元件入價值鏈,差異化本身系統產品的機會並不大。 相對的,智慧型手機當時才開始起步,主要廠商藉其銷售量來支持其手機CPU的設計,用以差異化其產品的功能,如蘋果(Apple)、三星(Samsung Electronics)、華為等。垂直整合的考慮再度浮上檯面。 不過這次的價值鏈垂直整合只及於IC產品設計這一層,而半導體製造環節則選擇利用已逐漸發展成熟的代工平台。手機IC設計主要在CPU這一塊,CPU大幅度決定手機功能,是手機企業核心競爭力的重中之重。垂直整合止於IC設計此一環節,能避開半導體製造環節必須自已持續投入巨額研發費用的無底洞,這是手機系統業者最合宜的價值鏈垂直整合長度。 後來的汽車產業也有類似的企圖,特別是在電動車/自駕車的領域,包括Tesla、比亞迪、小米等企業。這些電動車的終極目標自然是自駕車,包括各級別的自駕晶片,譬如Tesla的FSD(Full Self-Driving)晶片及軟體,也許會更積極擴張至AI平台,譬如Tesla的Dojo晶片及超級電腦系統。能設計車用的核心晶片及其運作統統,似乎也可掌握未來汽車產業的核心競爭力。 但是汽車與其它電子系統有根本性的差別。雖然未來電動車/自駕車有時候被戲稱行動的電腦,但是它基本上它是人的載具,牽涉到人身安全,因而引發後續的法律、風險與保險等相關問題。人命牽涉到文化中最基本的價值問題,而各國在此方面的認知存有分歧,這些分歧也可能造成市場的碎片化。另外,這些價值的認知即便在同一國家中亦可能存有差異,也可能造成市場發展緩慢。 從這個問題出發,統一半導體元件標準也許是建立規模經濟的解決方案。雖然在統一標準的過程中由於各地法律和文化的差異會比較困難,但是在標準統一之後,在各地的法律修定、保險規章費率、系統環境支持等方面可以快速發展,這是擴大整體規模經濟的方式。也就是說,對於攸關安全的半導體零件以及人工智慧、運行平台制定統一的標準,而產品的差異化及競爭力則置於其他面向。目前已有幾個機構正在推動制定汽車半導體元件的標準,譬如國際半導體產業協會(SEMI)。這也許是Tesla在此階段就將FSD軟體公開授權的原因,目前已經有許多車廠宣布支持此一方案。Tesla在此階段始推動統一標準無疑是深思熟慮的結果:目前尚未達到需要大幅牽動法律修改的自駕程度,此時先推動標準的統一,阻力會少很多,最多只是商業考量,而非汽車企業較難著力的修法程序。等到統一標準形成、變成既成事實後,修訂法律也會比較容易進行。而Tesla Dojo晶片和系統,也專注於影像識別的AI,這是自駕車系統最基礎的平台功能之一。 有些汽車企業甚至垂直整合入晶圓製造廠的環節,譬如博世(Bosch)和比亞迪。這會重蹈以前系統廠商與半導體廠終歸分離的覆輒嗎?不一定。 這幾家的晶圓廠都是以功率元件為主要產品,包括 power MOSFET、IGBT和SiC等。功率元件的獲利方程式與前述典型的藉持續投入研發、快速推進製程以獲取超額利潤的手段不一樣。這不是說功率元件不需要研發,只是比較集中在元件的結構與材料,而呈現的結果主要是耐壓、電的性能和可靠性的提升。  功率元件的製造主要在8吋廠,製程也還停留在0.20~0.25微米以上,這是因為要耐高壓、電需要較寬的線幅,提高元件性能只能靠元件結構和材料。以IGBT為例,從1980年代出現迄今,總共也只經歷7個世代。它的演進遠較邏輯和記憶體產品緩慢,研發經費可以在較多年限攤提。 在功率元件的領域,研發的規模經濟門檻較低,這也解釋在此領域還存有大小不等的IDM公司的原因。 汽車企業垂直整合功率元件半導體製造廠在,短期間內可以緩解過去幾年在車規功率半導體供需不平衡的問題。但是長期來看,汽車的核心價值會往AI與網路傾斜,能源的變換會變成標配,這個垂直整合是否合理還有待觀察。 另一個有趣的議題是有些IC設計公司宣稱他們是系統公司—另外的其實只是不做聲響、悄悄在做而已,在異質整合成為技術演進主流的年代,這個趨勢幾乎無可避免。電子系統的核心功能將被整合在單一的先進封裝內。電子系統產業與半導體產業如何在長價值鏈中分工或融合,這是企業該開始問一問自己的議題。
2024/4/9
產業垂直整合要多深? (一)
一個產業的加值鏈通常包含多個加值節點,一個產品/服務的最後價值,即是這些個別加值的總合。傳統的企業競爭策略理論會告訴你一個企業能夠整合進比較多的主要加值環節、成為企業核心能力的一部分,企業的競爭力會比較強。而且,在面臨產業加值鏈變遷時,企業比較有韌性,更能爭取時間以及資源去因應變遷。  半導體自成一個產業,2023年產值到達約6,000億美元,與PC、手機、伺服器等電子系統產業是同一個數量級的產值;另一方面,半導體又是各電子系統產品產業加值鏈的一環。於是電子系統與半導體的垂直整合,便反覆地成為產業內的策略考慮之一。  70年代主要的美國半導體業者是英特爾(Intel)、德儀(TI)和摩托羅拉(Motorola),其中TI有消費性產品,也有政府契約的產品;摩托羅拉是通訊公司。當時系統公司投入半導體產業有兩主要目的:1.投入新興的關鍵科技;2.公司核心能力的垂直整合。這兩個主旋律在產業內重複出現。  80年代日本主要的半導體公司如NEC、東芝(Toshiba)、日立(Hitachi)、富士通(Fujitsu)、三菱(Mitsubishi)等,以及南韓的三星(Samsung Electronics)、現代(Hyundai)和Gold Star,其背後無不有電子系統公司的身影。倒是台灣80、90年代的主要半導體公司絕大部分都是單從投資新興關鍵科技的觀點出發,這對於後來的發展影響巨大。  垂直整合當然不是企業在產業內競爭的唯一致勝手段,如規模經濟等也會影響競爭的結果。  半導體產業是高科技產業,獲得超額利潤的主要手段,是藉先於同儕利用尖端技術推出性能更優越的產品,而這種型態的競爭是持續的。持續的技術研發需要巨大資金不間斷的投入,商業機構的資金自然是來自於營業利潤的累積,營業額的規模大致決定能投入持續研發經費的尺度。在愈接近物理尺度極限時的研發工作變得更為複雜艱難,此時規模經濟的因素就變得格外顯著。  對於此規模經濟考量的因素下,80、90年代最大的次產業DRAM以及邏輯晶片分別演化出不同的樣態,以取得在規模經濟考量下的最適應模式。  DRAM次產業採取在產品介面標準化策略,促進規模經濟的發生—DRAM變成大宗商品(commodity)。大宗商品在流通、用量上較諸專用商品上有天然的數量優勢,進一步確立規模經濟。  如果半導體產品與電子系統廠商垂直整合,半導體產品的銷售原先有競業的問題—很難想像,譬如,三星手機設計的CPU晶片蘋果(Apple)願意使用。但是因為DRAM介面採用統一標準,競業因素變得不重要,因此半導體廠產品的總體潛在市場(TAM)擴大了。如此也有負面效果。DRAM產品介面標準化後,原先在系統價值鏈垂直整合的綜效就被打了折扣:大宗商品可從市場中擇優取得。  另外,領先的DRAM公司還利用DRAM與2D NAND Flash製程的相似性,跳躍性的擴大記憶體製程的研發規模經濟,一次性的拉開與記憶體產業中第二梯隊的差距,形成今日記憶體產業三足鼎立的態勢。  邏輯產品品類比較分散,過去主要產品CPU處於寡佔狀態,近乎虛擬的統一標準;其他產品次市場的份額較小,即便統一產品介面標準也難以形成有效的規模經濟。所以邏輯產品採取不同的途徑來取得規模經濟:共用相同或相容的製程平台,這就是代工次產業概念的濫殤。  記憶體產業以統一的產品介面標準,以及代工產業以共用的製程平台,形成各自規模經濟,也反轉電子系統產業垂直整合半導體的原先企圖。
2024/4/3
核融合電能何時能商業運轉? (二) —產業的進程
核融合反應爐的研發起始於50年代。相較於英國在1956年已經開始商業運轉的核分裂反應爐是晚了不少。  早期核融合反應爐的最大問題在於電漿的約束:哪種機制可以約束住溫度高到幾乎可以融毀一切物質的電漿? 延伸報導名人講堂:核融合電能何時能商業運轉? (一)—核融合反應爐的工程挑戰當時的核融合是當成基礎科學議題來研究的。核融合反應爐何時可以商業運轉發電?這個問題在上世紀的標準回答都是30年後—意思是還早著呢,一次一次接著跳票。  最近的氛圍已有顯著變化,近年來市場資金總計投入近50億美金用於核融合反應爐的研發,目前以此為主題的新創已接近40餘家。  近年來最令人振奮的消息之一,是2022年12月5日美國勞倫斯利佛摩國家實驗室(Lawrence Livermore National Lab;LLNA)與國家點火設施(National Ignition Facility;NIF)合作的核融合反應有淨能量收益(net energy gain)。  此次實驗採用的約束機制為ICF,共192管紅寶石雷射以圓對稱射向置於圓心的原料顆粒(pellet)均勻加溫。投入的雷射能量為2.05百萬焦耳(MegaJoules;MJ),產出的核融合能量為3.15MJ,能量增益係數Q=3.15/2.05>1.5,核融合反應本身的確能釋放出能量!這是個里程碑式的實驗。  負責任的媒體還會加注其實那2.05MJ是由300MJ的電能產生的,遑論若依傳統能量轉換途徑,核融合能得先轉換成熱能、熱能再轉換成電能,轉換成電能的效率還得打一個大折扣。若真能成為發電設施,不只是反應爐,整個系統要有淨能量增益。這樣算來,粗估的核融合反應爐的淨能量增益至少要Q>10才能涵蓋系統中其他的能量消耗。商用系統還有一段路要走。 無論如何,原來是基礎科研的問題轉變成工程問題。工程問題可以分而治之(divide and conquer),研發速度因而加快。譬如LLNL與NIF的計畫中的紅寶石雷射若換成二極體雷射,能源輸出效率可以提升30倍,這樣就是穩穩向前邁一步。  另一個促使進展加快的因素是新創的投入。這些新創與公共機構形成夥伴關係(public-private partnership),專注於一些特殊核融合反應爐發電的機構、機制或原料等技術,可以基於公共機構較周延的基礎科研結果,快速進入商業運轉階段。  當商業資金開始投入一個新技術時,由獲利動機驅動的研發顯示加速進展的可能。最近一個例子是量子電腦的發展。  IBM在發展出第一代、第二代量子電腦時,預計的量子算力是以每年倍增的指數成長,這已是比摩爾定律—每18個月倍增—更積極的技術路標。發展迄今其實現狀比這技術路標快多了!  另外一個看起來比較不顯著,實質上很重要者,是機器學習已經投入核融核反應爐的研發,最主要的兩個領域是在材料開發和反應爐結構,以及核融合反應參數的優化。  所以,核融合反應爐何時可以開始商業化?最樂觀的是2030年初期,這個日期出現在一些新創公司網頁和新聞。保守些的呢,有生之年。但是這不是以前談的30年後,因為持這樣主張的人也同時談2050年的碳淨零排放,核融合反應爐發電不再是遙遙無期的。 (作者為DIGITIMES顧問) 
2024/3/11
核融合電能何時能商業運轉? (一)—核融合反應爐的工程挑戰
 原子是以原子核中的帶正電質子的數目來決定原子序的。原子核中除了質子外,還有數量大致相仿的中子,這些質子與中子以強作用力(strong interaction)束縛在一起,這就是核結合能(nuclear binding energy)。  核結合能的物理基礎強作用力,在短距離內比化學作用的物理基礎電磁作用強100倍,因此核反應的能量遠大於化學作用的能量。  鐵(原子序26)的同位素群與鎳(原子序28)是元素中平均核結合能最高的,也就是最穩定的元素。以鐵同位素群為例,核結合能可以高達8.8百萬電子伏特(MeV)。物理驅使物質轉變成較穩定的結構,所以原子序比鐵高的原子就會透過核分裂(nuclear fission)轉變成較小的原子;而分子序較小的原子則傾向透過核融合(nuclear fusion)轉變成原子序較高的原子。前者已應用於現今的核能發電,而後者就是目前全世界研發開始升溫的核融合發電。  核融合為什麼比核分裂更具吸引力呢?第一個原因是核融合的過程及其廢料有較低的幅射性。第二個原因是如果核融合反應爐無法正常運作,它不會如核分裂反應爐因連鎖反應(chain reaction),導致核反應爐融毀(nuclear reactor meltdown)而近乎無法收拾。核融合反應爐無法正常運作時,核融合反應停了就停了。另外還有個原因是核融合反應的原料,近乎取之不竭、用之不盡。  最常使用的核融合反應的原料是氘(Deuterium)和氚(Tritium),二者都是氫的同位素,也就是說和氫原子一樣,每個原子核都含有一個質子,但是氘和氚的原子核還分別具有1個和2個中子。使用氘和氚當成核融合反應原料的原因是它的散射截面(scattering cross section)—也就是核融合反應發生的機率最大,所釋出的能量最多,高達17.6MeV。  氘在自然中穩定存在,可以從海水中提取。但是氚具有放射性,而且半衰期很短,只有12.3年,自然界中只存有30~40kg,所以核融合反應爐必須在反應的過程中自己產生足夠的氚,以維持連續的核融合反應。這是核融合反應爐設計時必須考慮的因素之一。  核融合反應時需要較高的溫度,氘和氚在此環境下以離子的形態存在,也就是氘和氚中的原子核和電子是分離的,這就是電漿態(plasma)。氘離子和氚離子都帶有一個正電荷,它們之間存有庫侖排斥力。這就解釋為什麼氘和氚被選為核融合反應原料的原因:其排斥力最小,但是原子核較大,較容易碰撞,而且碰撞機率高。  要克服電磁互斥力讓氘離子和氚離子進行核融合反應必須符合一定的條件。基本上要離子的密度、溫度和其能量約束時間(energy confinement time)的乘積大於一定數值,這是核融合反應爐能維持穩定運作的條件,術語叫「點火」(ignition)。  能持續維持核融合反應的溫度大概在10~20keV之間,約等於8,000萬度到1.6億度之間,這比太陽核心的溫度還高。要維持這樣高的溫度,以及高的離子密度,必須把離子束縛在一個有限的空間中,這就是核融合最核心的工程問題之一:約束(confinement)。約束的方法比較多的是用磁場(Magnetic Confinement Fusion;MCF)來約束離子的行徑;另一個是靠慣性(Inertial Confinement Fusion;ICF),利用震波(shock wave)來壓縮及點燃離子;還有二者的混合形態MTF(Magnetized Target Fusion)。為了提高磁場,高溫超導(High Temperature Superconducting;HTS)膠帶被用於磁約束核融合反應爐上。 由於離子的集體形態電漿比較接近液體,而處於特殊狀況的液體會產生較為激烈的行徑,譬如擾流(turbulence)。離子的穩定性一直是核融合反應爐的一個工程挑戰。  氘離子和氚離子反應後產生氦離子(即是阿爾法粒子)和中子,其中氦離子擕帶核融合約5分之1能量,之後轉移能量讓原料能維持在高溫、可以持續核融合反應。但是氦離子得想法排掉,避免影響後續核融合反應的發生。  中子以動能的形式攜帶約5分之4的核融合能量,這是核融合反應爐產生能源的主要形態。中子不帶電,不受磁場束縛,會四向逃逸。想利用它的動能轉化成一般渦輪機可以使用的能量,得用防護牆先攔著,將其轉化成熱能。  另外由於前述的原因,氚必須在核融合反應爐中自己產生,防護牆上得覆蓋含鋰元素的繁殖氈(breeding blanket)。當中子撞擊到鋰時,會產生氚。中子在整個核融合過程中可能會消耗、流失掉一部分,繁殖氈上還必須加入鈹或鉛元素。當中子撞擊到這些元素之後,會產生2個中子,這樣中子的數目就得以增加,讓核融合反應爐中的氚得以持續補充,維持反應爐的持續運作。  這大概就是主流的氘-氚磁約束核融合反應爐所需面臨的主要工程挑戰。  
2024/3/4
日本半導體產業的文藝復興之路(二)
日本政府引進國外半導體業者投資的效果相當顯著,幾乎國際間各大半導體製造公司都報到了。另外本土公司聯盟組成的公司Rapidus也將目標置於尖端製程的開發。  這些晶圓廠的興建對日本半導體的貢獻,剛開始時比較是稍為間接的。在恢復產業生態、擴大機器設備、材料內需市場、以及支持日本IC設計公司方面等都當然有幫助,但是對於自有的先進製程研發卻得看Rapidus的表現。 延伸報導名人講堂:日本半導體產業的文藝復興之路(一)Rapidus一開始就瞄準2奈米nanosheet GAAFET(Gate All Around FET)的最先進製程,和IBM與IMEC合作,預計在2027年左右量產。1.5/1奈米需要不同的電晶體結構,將和LETI(Laboratoire d’Electronique des Technologies de l’Information)合作,用2維材料過渡金屬二硫屬化合物(Transition Metal Dichalcogenides;TMD)當成電晶體中通道(channel)材料。  Rapidus面臨的挑戰之一是參與製程研發的各方皆無量產經驗。IBM最後的量產晶圓廠賣給格羅方德(GlobalFoundries)是2015年,其他各方要不是新創,要不就是實驗室類型的研發機構,要走向量產註定要多花一些工夫。  然而,Rapidus最大的挑戰是有無辦法快速地建立規模經濟(economy of scale)。先進製程的研發極其昂貴,代工廠其實是以用IC設計公司客戶資金實施眾籌,進行下世代製程研發。因而到14奈米以下,全球市佔不足的公司紛紛停止先進製程的競逐。  對於2奈米以下的先進製程的開發尤為如此。2奈米是nanosheet GAAFET,1.5/1 奈米是2D通道電晶體,1 奈米以下可能是CFET(complementary FET)。幾個世代間的電晶體的結構、材料、製程都是翻天覆地的大變化,若無足夠大的市佔便無法產生足夠的盈餘,無力推動下世代製程的開發。即使湊了開發費用,沒有足夠的市佔也無法回收,遑論建立代工生產所需要的諸多生態環境如設計服務、先進封裝等。  先進晶圓廠的建立無疑的會提高日本機器設備廠商的市佔率,有些晶圓廠已經設立日本國內設備採購佔比的目標。  這個因素影響相對比較輕微,重要的是日本在黃光這一大區塊是否能重新啟動。2023年Cannon推出奈米壓印(Nano Imprint Lithography;NIL),解析度可以達到5奈米,預計2025年會先在NAND Flash的製造中使用,但是預計無法完全取代EUV。要打入DRAM及邏輯線路的市場還要在對準(overlay)以及粒子(particle)問題上下工夫改善。 延伸報導名人講堂:奈米壓印的初始應用 (一):技術與挑戰另外一個領域是日本有機會得分較多的是先進封裝設備。日本的先進封裝設備相對領先,而製程持續演進、先進封裝、新材料是現代半導體經濟增值的三大支柱。先進封裝市場的自然擴增—譬如現在當紅的生成式AI(generative AI)就一定要使用先進封裝—自然提升在此領域的優勢廠商的市佔表現。  最後是材料。日本於此部分環節猶仍如日中天,卻有危機隱然浮現。明處的是來自於中國的威脅,中國的材料基礎科研發表論文佔全世界約14.5%,比美國多1倍,而中國目前正在進行材料、設備的自主化。這一定會影響到日本,只是時間早晚的問題。  更深層的理由是材料的合成與製造正在經歷典範轉移。第一原理計算(first principles calculation)、AI與量子計算等用計算的方式正在逐漸顛覆傳統的合試誤方式,工藝精神的優勢正在逐漸弱化。雖然日本於先進計算並不落後,譬如富士通(Fujutsu)用數位退火(digital annealer)來輔助材料開發仍然領先全球,但是產業的典範移轉就意味著變動的可能性。  先進半導體材料的應用考慮與傳統材料有些差異:材料介面性質到與塊材(bulk)性質至少一樣重要,而且很多材料的使用是依賴半導體製程設備。  日本的材料研發比較願意做長期部署,而半導體廠商求的多是短期內有機會進入應用的材料候選人,這二者密切的結合,會深度地互相嘉惠對方。 先進晶圓廠在日本開始發展的新聞中最令我有感的是台積電與三星電子(Samsung Electronics)都在日本設立材料實驗室,這可能是對日本材料產業最大的立即助益,而且助益是互相的。
2024/2/5
日本半導體產業的文藝復興之路(一)
當我進入DRAM產業時,那時最負盛名的半導體產業分析報告Dataquest,列出DRAM產業廠商排行:90年代下半,三星電子(Samsung Electronics)已然出頭,NEC和東芝(Toshiba)還分居二、三,前十名中尚有其他日本廠商。這看似猶為優裕的景況,僅僅已是日本半導體產業的落日餘暉。  再往前10年,日本半導體正當是花團錦簇、油烹鼎沸時分,半導體產品佔據全世界50%的市場,機器設備廠商自晶圓製造到封測都是獨佔鰲頭,材料更是處於宰制地位。整個半導體供應鏈,除了80年代末期才開始萌芽的電子設計自動化(Electronic Design Automation;EDA)之外,幾乎是完整而且佔有絕大優勢的。  經過20幾年的凋零,現在日本的半導體產業景況又是如何呢?簡單的講,可以用1、3、5這3個數位一言以蔽之。1是指半導體生產佔全世界市場的百分比近10%、3是指半導體製造機器設備約佔30%、5是指半導體材料約佔50%。  這個1、3、5看起來貧脊嗎?一點也不會。10%是什麼概念?高的如南韓,近20%;日本與歐盟並列,近10%;再次是台灣、中國。  日本半導體製造雖然不能與全盛時期相比,但是在有些特殊領域如功率器件、車用半導體等尚有一席之地。欠缺的只是先進製程技術及產能,這也是日本政府及產業界努力推動的方向。 另外,日本的IC設計公司也嫌不足。90年代後,日本從DRAM產業轉向系統IC後,發現設計人力不足的問題。一家大的DRAM公司基本上只需要幾個IC設計團隊就已經足以滿足產能需求,因為DRAM是標準產品,而且市場規模大;系統IC的樣態較多,市場比較分散,需要更多的IC設計團隊。目前日本的IC設計次產業仍然嫌單薄。 機器設備的市佔率自然也不如前,主要失去的市場自然是黃光設備,這是90年代DARPA發展出EUV技術原型後技術移轉對象選擇的結果,先進製程黃光設備市佔的流失是必然趨勢。日本在黃光之外還丟失了一些市場,譬如蝕刻設備。總體而言,日本的半導體製造機器設備仍然有顯著的份量。  日本半導體材料仍然維持著市場主宰的地位。這要歸功於過去化合物的發現和合成有點匠人工藝(craftsmanship)的味道—經驗不是單以銳意進取的作為就可以替代的。像味素(Ajinomoto)能從一家調味品公司擴張到半導體材料,靠的當然不是其原來所缺少的半導體的領域知識,而是對化合物的發現與合成的匠人工藝精神。  日本半導體產業其實並未經歷猶如中世紀的黑暗期,講文藝復興是有些言重了。  眼下日本政府全力引進的各國投資有效嗎?會改變哪些現況呢? 
2024/1/29
晶創台灣方案評論 (二)
第二項技術議題是「加速產業創新所需異質整合及先進技術」,這個很明顯是對上述生成式人工智慧(generative AI)晶片及應用的支援項目。 延伸報導名人講堂:晶創台灣方案評論 (一)異質整合(heterogeneous integration)是將用不同製程、材料製作的晶片透過先進封裝整合在一起,提升系統功能與表現效能。目前生成式AI及其他的AI應用是用2.5D先進封裝,將GPU晶片與HBM3或HBM3E封裝在一起,以提高頻寬、提高速度。再下個世代的HBM4或許可能採用銅混合鍵合(copper hybrid bonding)的3D先進封裝或者用矽光子以連接GPU與HBM,進一步提高速度和頻寬,這些也都是異質整合和先進封裝的發展方向。  這個技術方向自然是用來支援生成式AI晶片的發展,如果生成式AI的發展方向是正確的話,異質整合的方向也是正確的。異質整合還有自己的重要性,以前ITRS(International Technology Roadmap for Semiconductors)用來標示技術進展的計量是製程微縮的節點,2017年後產業界就用Heterogeneous Integration Roadmap,顯示每年可以被異質整合進封裝的元件種類/形態/功能。這意味著異質整合本身也成為半導體增加經濟價值的驅動力之一。  這個項目中的異質整合技術—特別是與生成式AI高度相關的矽光子與銅混合鍵合—台灣的半導體產業早已提前投入並取得相當成果。  異質整合的晶片設計比以前單一晶片的設計要複雜許多。譬如銅混合鍵合的晶片設計由於上下兩片晶片—譬如GPU與DRAM—尺寸要一樣,而且金屬接點要互相對應,2個晶片的協同設計是基本要求。此時的設計工作會牽涉整個系統而非單一晶片,新的設計輔助工具也是需要的。台灣半導體產業在這方面也提早準備了,譬如聯電與Cadence於2022年初發布完成聯合開發設計工具的消息。  至於人力資源與投資環境的問題,這在台灣已是沉疴,在此只加注一點。  從方案中的人力資源方案來看,顯然政策上已經清楚認知台灣人口基數的長期下降才是目前人力資源不足的主因。這一點是顯著的進步。清楚問題的根源才有機會提出正確的解決方案。  對這個方案有3個基本問題,第一個問題是方案的提出時間。2023年並不是常規的10年科技政策出台的年度,而且此屆內閣即將任滿。於即將任滿的時間制訂一個長達10年的政策,在行政倫理上合適嗎?  第二個問題是經費。10年新台幣3,000億元的經費是個不算小的金額,如果以每年的平均經費來計算,此方案在年度科技總預算的佔比高達30%。這樣的專案預算編列只有2種結果:一是排擠其他常規項目的空間、一是需要增加新預算。如果是增加新預算,長期計劃就要另覓長期的新財源。這些在方案中以及相關的訊息揭露都沒有看到。問題是預算來源到底是那一種?削減其他專案預算?還是要開譬新源,而源頭在哪?  最後一個是關於電力的問題。目前很多的生成式AI晶片設計在效能與節電—散熱之間的選擇,都大幅的傾向追求效能,而將散熱的問題留給製程與封裝去解決,是以連晶片水冷這樣複雜的方案都也列入考慮了。生成式AI很耗電嗎?當初ChatGPT剛問世時,各大雲端伺服器都遭遇耗電驟升的窘況,而那只是淺嘗即止的試用期。  如果這方案真的很成功,在生成式AI晶片的製造應用都順利推展到各領域,算過電力供應要怎麼成長才能支應嗎?這些電力哪裡來? (作者為DIGITIMES顧問)
2024/1/22